Let Sn =1 + 2 + 3 + ... + 45. This is an A.P. in which a =1, d =1, n = 45.
Sn =$ \dfrac{n}{2} $[2$ a $ + $\left( n - 1\right)$ d ]=$ \dfrac{45}{2} $ x [2 x 1 + (45 - 1) x 1]=$ \dfrac{45}{2} $x 46= 45 x 23
= 45 x (20 + 3)
= 45 x 20 + 45 x 3
= 900 + 135
= 1035.
Shorcut Method:
Sn =$ \dfrac{n(n + 1)}{2} $=$ \dfrac{45(45 + 1)}{2} $= 1035.
24 = 3 x8, where 3 and 8 co-prime.
Clearly, 35718 is not divisible by 8, as 718 is not divisible by 8.
Similarly, 63810 is not divisible by 8 and 537804 is not divisible by 8.
Consider option (D),
Sum of digits = (3 + 1 + 2 + 5 + 7 + 3 + 6) = 27, which is divisible by 3.
Also, 736 is divisible by 8.
$\therefore$ 3125736 is divisible by 3 x 8, i.e., 24.
$\Rightarrow$ 20 - 20$ x $2 = 9$ x $
$\Rightarrow$ 20$ x $2 + 9$ x $ - 20 = 0
$\Rightarrow$ 20$ x $2 + 25$ x $ - 16$ x $ - 20 = 0
$\Rightarrow$ 5 x $\left(4x+ 5\right)$ - 4$\left(4x + 5\right)$ = 0
$\Rightarrow$ $\left(4 x + 5\right)$ x $\left(5 x - 4\right)$ = 0
$x$ =$ \dfrac{4}{5} $
Formula: [Divisor*Quotient] + Remainder = Dividend.
Soln:
[56*Q]+29 = D -------(1)
D%8 = R -------------(2)
From equation 2,
[56*Q+29]%8 = R.
=> Assume Q = 1.
=> [56+29]%8 = R.
=> 85%8 = R
=> 5 = R.
( x n + 1) will be divisible by ( x + 1) only when $ n $ is odd.
$\therefore$(6767 + 1) will be divisible by (67 + 1)
$\therefore$(6767 + 1) + 66, when divided by 68 will give 66 as remainder.
3-digit number divisible by 6 are: 102, 108, 114,... , 996
This is an A.P. in which $ a $ = 102, $ d $ = 6 and $ l $ = 996
Let the number of terms be $ n $. Then $ t $n = 996.
$\therefore a $ + $\left(n - 1\right)$d = 996
$\Rightarrow$ 102 + $\left( n - 1\right)$ x 6 = 996
$\Rightarrow$ 6 x $\left( n - 1\right)$ = 894
$\Rightarrow$ ( n - 1) = 149
$\Rightarrow n $ = 150
$\therefore$ Number of terms = 150.
Required numbers are 24, 30, 36, 42, ..., 96
This is an A.P. in which $ a $ = 24, $ d $ = 6 and $ l $ = 96
Let the number of terms in it be $ n $.
Then tn = 96 $\Rightarrow$ $ a $ + $\left(n - 1\right)$d = 96
$\Rightarrow$ 24 + $\left( n - 1\right)$ x 6 = 96
$\Rightarrow$ $\left( n - 1\right)$ x 6 = 72
$\Rightarrow$ $\left( n - 1\right)$ = 12
$\Rightarrow n $ = 13
Required number of numbers = 13.
4 a 3 |
9 8 4 } ==> a + 8 = b ==> b - a = 8
13 b 7 |
Also, 13b7 is divisible by 11 $\Rightarrow$ (7 + 3) - (b + 1) = (9 - b)
$\Rightarrow$ (9 - b) = 0
$\Rightarrow$ b = 9
$\therefore$ b= 9 and a= 1 $\Rightarrow$ (a + b) = 10.
Let $ x $ = 296$ q $ + 75
= $\left(37 \times 8q + 37 \times 2\right)$ + 1
= 37 $\left(8 q + 2\right)$ + 1
Thus, when the number is divided by 37, the remainder is 1.
5 | $x$ z = 13 x 1 + 12 = 25
--------------
9 | y - 4 y = 9 x z + 8 = 9 x 25 + 8 = 233
--------------
13| z - 8 $x$ = 5 x y + 4 = 5 x 233 + 4 = 1169
--------------
| 1 -12
585) 1169 (1
585
----------
584
----------
Therefore, on dividing the number by 585, remainder = 584.
87) 13601 (156
87
-------
490
435
-------
551
522
-------
29
-------
Therefore, the required number = 29.
Let the given number be 476 $x$$y$ 0.
Then $\left(4 + 7 + 6 + x + y + 0\right)$ = $\left(17 + x + y \right)$ must be divisible by 3.
And, $\left(0 + x + 7\right)$ - $\left( y + 6 + 4\right)$ = $\left( x - y -3\right)$ must be either 0 or 11.
$ x $ - $ y $ - 3 = 0 $\Rightarrow y $ = $ x $ - 3
17 + $x$ + $y$ = $\left(17 + x + x - 3\right)$ = 2$ x $ + 14
$\Rightarrow x $= 2 or $ x $ = 8.
$\therefore x $ = 8 and $ y $ = 5.
Given number = 97215 x 6
$\left(6 + 5 + 2 + 9\right)$ - $\left( x + 1 + 7\right)$ = $14 - x$, which must be divisible by 11.
$\therefore$ $ x $ = 3
(112 + 122 + 132 + ... + 202) = (12 + 22 + 32 + ... + 202) - (12 + 22 + 32 + ... + 102)
Ref: (12 + 22 + 32 + ... + n2) =$\dfrac{1}{6} n(n + 1)(2n + 1)$
= (2870 - 385)
= 2485.
Clearly, (2272 - 875) = 1397, is exactly divisible by N.
Now, 1397 = 11 x 127
$\therefore$ The required 3-digit number is 127, the sum of whose digits is 10.
987 = 3 x 7 x 47
So, the required number must be divisible by each one of 3, 7, 47
553681 $\rightarrow$ Sum of digits = 28, not divisible by 3
555181 $\rightarrow$ Sum of digits = 25, not divisible by 3
555681 is divisible by 3, 7, 47.
$ x $ = 13$ p $ + 11 and $ x $ = 17$ q $ + 9
$\therefore$ 13$ p $ + 11 = 17$ q $ + 9
$\Rightarrow$ 17$ q $ - 13$ p $ = 2
$\Rightarrow$ q=$ \dfrac{2 + 13p}{17} $
The least value of $ p $ for which q =$\dfrac{2 + 13 p }{17}$ is a whole number is $ p $ = 26
$\therefore x $ = $ \left(13 \times 26 + 11\right)$
= 338 + 11
= 349
72 = 9 x8, where 9 and 8 are co-prime.
The minimum value of x for which 73$ x $ for which 73$ x $ is divisible by 8 is, $ x $ = 6.
Sum of digits in 425736 = (4 + 2 + 5 + 7 + 3 + 6) = 27, which is divisible by 9.
$\therefore$Required value of * is 6.
Let $ n $ = 4$ q $ + 3. Then 2$ n $ = 8$ q $ + 6 = 4 $\left(2 q + 1\right ) $ + 2.
Thus, when 2$ n $ is divided by 4, the remainder is 2.
Let the two consecutive even integers be 2$n $ and $\left(2 n + 2\right) $. Then,
$\left(2n + 2\right)$2 = $\left(2 n + 2 + 2 n\right )$$\left(2 n + 2 - 2 n \right)$
= 2$\left(4 n + 2\right) $
= 4$\left(2 n + 1\right)$, which is divisible by 4.