Simple Interest =$\dfrac{PRT}{100}$ = $\dfrac{900 \times 10 \times 1}{100} $= Rs.90
Amount after 1 year on Rs.900 at 10% per annum when interest is reckoned half-yearly
=P $\left(1 + \dfrac{\left(R/2\right)}{100}\right)^2T$ = 900$\left(1 + \dfrac{(10/2)}{100}\right)^{2 \times 1}$ = 900$\left(1 + \dfrac{5}{100}\right)^{2}$ = 900$\left(\dfrac{105}{100}\right)^{2}$
$= \dfrac{900\times 105 \times 105}{100 \times 100}$ = Rs.992.25
Compound Interest = 992.25 - 900 = 92.25
Required difference between simple interest and compound interest = 92.25 - 90 = Rs.2.25
Amount of Rs. 100 for 1 year when compounded half-yearly= Rs $\left[100\times\left(1+\dfrac{3}{100}\right)^2\right]$= Rs. 106.09 |
$\therefore$ Effective rate = (106.09 - 100)% = 6.09%
= Rs. $\left[1600\times\left(1+\dfrac{5}{2\times100}\right)^2+1600\times\left(1+\dfrac{5}{2\times100}\right)\right]$
= Rs. $\left[1600+\dfrac{41}{40}\times\dfrac{41}{40}+1600\times\dfrac{41}{40}\right]$
= Rs. $\left[1600+\dfrac{41}{40}\left(\dfrac{41}{40}+1\right)\right]$
= Rs. $\left[\dfrac{1600\times41\times81}{40\times40}\right]$
= Rs. 3321
$\therefore$ C.I. = Rs. (3321 - 3200) = Rs. 121
Amount after 3 years = P $\left(1 + \dfrac{R}{100}\right)^T$ = $40000\left(1 + \dfrac{11}{100}\right)^3$ =$ 40000\left(\dfrac{111}{100}\right)^3$
= $\dfrac{40000 \times 111 \times 111 \times 111}{100 \times 100 \times 100}$ = $\dfrac{4\times 111 \times 111 \times 111}{ 100} $= 54705.24
Compound Interest = 54705.24 - 40000 = Rs. 14705.24
Let the rate be R% p.a.
Then, 1200 $ \times\left(1 +\dfrac{R}{100} \right)^2$= 1348.32 |
$\Rightarrow \left(1 +\dfrac{R}{100} \right)^2$=$ \dfrac{134832}{120000} $=$ \dfrac{11236}{10000} $ |
$\therefore \left(1 +\dfrac{R}{100} \right)^2$=$ \left(\dfrac{106}{100} \right)^2$ |
$\Rightarrow$ 1 +$ \dfrac{R}{100} $=$ \dfrac{106}{100} $ |
$\Rightarrow$ R = 6%
Let P = Rs. 100. Then, S.I. Rs. 60 and T = 6 years.
$\therefore$ R =$ \left(\dfrac{100 \times 60}{100 \times 6} \right) $= 10% p.a. |
Now, P = Rs. 12000. T = 3 years and R = 10% p.a.
$\therefore$ C.I. | = Rs.$ \left[12000 \times\left\{\left(1 +\dfrac{10}{100} \right)^3- 1\right\}\right] $ |
= Rs.$ \left(12000 \times\dfrac{331}{1000} \right) $ | |
= 3972. |
C.I. when interest is compounded half-yearly | = Rs.$ \left[5000 \times\left(1 +\dfrac{4}{100} \right)\times\left(1 +\dfrac{\dfrac{1}{2} \times 4}{100} \right)\right] $ |
= Rs.$ \left(5000 \times\dfrac{26}{25} \times\dfrac{51}{50} \right) $ | |
= Rs. 5304. |
C.I. when interest is compounded half-yearly | = Rs.$ \left[5000 \times\left(1 +\dfrac{2}{100} \right)^3\right] $ |
= Rs.$ \left(5000 \times\dfrac{51}{50} \times\dfrac{51}{50} \times\dfrac{51}{50} \right) $ | |
= Rs. 5306.04 |
$\therefore$ Difference = Rs. (5306.04 - 5304) = Rs. 2.04
Let Principal = 2500, r=6%=0.06616=0.03, n=8×2=16
We know thatA=P(1+r)n
=2500(1+.03)16
=4011.73
The compound interest =4011.73−2500=1511.73
FV = PV × (1 + r)n
Substitute PV = $2,500, r = 2% = 0.02 and n = 15
FV = $2,500 × (1 + 0.02)15 = $2,500 × (1.02)15
= $2,500 × 1.34586...
= $3364.6708...
So the value after 6 years = $3,364.67
- Ratio and Proportion Test 4
- Percentage Test 2
- Percentage Test 3
- Percentage Test 4
- Percentage Test 5
- Percentage Test 6
- Ratio and Proportion Test 1
- Ratio and Proportion Test 2
- Ratio and Proportion Test 3
- Percentage Test 1
- Average Test 1
- Average Test 2
- Average Test 3
- Interest Test 1
- Interest Test 2
- Interest Test 3
- Interest Test 4
- Interest Test 5
- Time and Distance Test 3
- Number system Test 2
- Partnership Test 1
- Partnership Test 2
- Profit,Loss and Discount Test 1
- Profit,Loss and Discount Test 2
- Profit,Loss and Discount Test 3
- Time and Distance Test 1
- Time and Distance Test 2
- Number System Test 1
- Time and Work Test 1
- Time and Work Test 2
- Time and Work Test 3
- Time and Work Test 4
- Time and Work Test 5
- Time and Work Test 6
- Time and Work Test 7