Easy Tutorial
For Competitive Exams
Aptitude Number System Practice Q&A - Easy Page: 2
2667.Which of the following numbers will completely divide (4915 - 1) ?
8
14
46
50
Explanation:

$x$ n - 1 will be divisibly by $ x $ + 1 only when $ n $ is even.

(4915 - 1) = {(72)15 - 1} = (730 - 1), which is divisible by (7 +1), i.e., 8.

2668.9+$\dfrac{3}{4}$+7+$\dfrac{2}{17}$-$\left(9+\dfrac{1}{15}\right)$=?
7 +$ \dfrac{719}{1020} $
9 +$ \dfrac{817}{1020} $
9 +$ \dfrac{719}{1020} $
7 +$ \dfrac{817}{1020} $
Explanation:

Given sum

= 9 +$ \dfrac{3}{4} $+ 7 +$ \dfrac{2}{17} $-$ \left(9 +\dfrac{1}{15} \right) $

= (9 + 7 - 9) +$ \left(\dfrac{3}{4} +\dfrac{2}{17} -\dfrac{1}{15} \right) $

= 7 +$ \dfrac{765 + 120 - 68}{1020} $

= 7 +$ \dfrac{817}{1020} $

2672.How many prime numbers are less than 50 ?
16
15
14
18
Explanation:

Prime numbers less than 50 are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

Their number is 15

2675.$\left(800 ÷ 64\right)$ x $\left(1296 ÷36\right)$ = ?
420
460
500
None of these
Explanation:

Given Exp. =$ \dfrac{800}{64} $x$ \dfrac{1296}{36} $= 450

2676.Which natural number is nearest to 8485, which is completely divisible by 75 ?
8475
8500
8550
8525
Explanation:

On dividing, we get

75) 8485 (113

     75

     ----

      98

      75

      ----

       235

       225

       ----

       10

       ----

Required number = (8485 - 10) // Because 10 < (75 - 10) = 8475.

2678.Which of the following numbers is divisible by each one of 3, 7, 9 and 11 ?
639
2079
3791
37911
Explanation:

639 is not divisible by 7

2079 is divisible by each of 3, 7, 9, 11.

2679.Which natural number is nearest to 9217, which is completely divisible by 88 ?
9152
9240
9064
9184
Explanation:

On dividing we get,

88) 9217 (104

     88

    ----

     417

     352

     ----

      65

      ----

Therefore, Required number = 9217 + (88 - 65) // Because (88 - 65) < 65.

      = 9217 + 23

      = 9240.

2680.4300731 - ? = 2535618
1865113
1775123
1765113
1675123
Explanation:

Let 4300731 - $ x $ = 2535618

Then $ x $, = 4300731 - 2535618 = 1765113

2682.$\dfrac{\left(489 + 375\right)^2-\left(489 - 375\right)^2}{\left(489 \times 375\right)}$=?
144
864
2
4
Explanation:

Given Exp. =$\dfrac{(a + b)^2 - (a - b)^2}{ab}$=$\dfrac{4ab}{ab}$= 4

2683.397 x 397 + 104 x 104 + 2 x 397 x 104 = ?
250001
251001
260101
261001
Explanation:

Given Exp.= $\left(397\right)$2 + $\left(104\right)$2 + 2 x 397 x 104

= $\left(397 + 104\right)$2= $\left(501\right)$2

= $\left(500 + 1\right)$2

= $\left(500\right)$ 2+$\left (1\right)$2 + $\left(2 \times 500 \times 1\right)$

= 250000 + 1 + 1000= 251001

2684.$\left(35423 + 7164 + 41720\right)$ - $\left(317 \times 89\right)$ = ?
28213
84307
50694
56094
Explanation:

  35423

+ 7164

+ 41720

  ---------

  84307

- 28213

  ---------

  56094

  ---------

317 x 89 = 317 x $\left(90 -1\right )$

=$ \left(317 \times 90 - 317\right)$

= $\left(28530 - 317\right)$

= 28213

2685.(xn - an) is completely divisible by (x - a), when
n is any natural number
n is an even natural number
n is and odd natural number
n is prime
Explanation:

For every natural number $ n $, (x $ n $ - $ a $$ n $) is completely divisible by (x - a).

2688.A number when divide by 6 leaves a remainder 3. When the square of the number is divided by 6, the remainder is:
0
1
2
3
Explanation:

Let $ x $ = 6$ q $ + 3.

Then, $ x $2 = (6q + 3)2

   = 36$ q $2 + 36$ q $ + 9

   = 6(6 q 2 + 6$ q $ + 1) + 3

Thus, when $ x $2 is divided by 6, then remainder = 3.

2690.What will be remainder when 17200 is divided by 18 ?
17
16
1
2
Explanation:

When $ n $ is even. $\left( x^ n - a ^n\right)$ is completely divisibly by ( x + a )

(17200 - 1200) is completely divisible by (17 + 1), i.e., 18.

$\Rightarrow$    (17200 - 1) is completely divisible by 18.

$\Rightarrow$    On dividing 17200 by 18, we get 1 as remainder.

2691.If 1400 x $x$ = 1050. Then, $x$ = ?
$ \dfrac{1}{4} $
$ \dfrac{3}{5} $
$ \dfrac{2}{3} $
$ \dfrac{3}{4} $
Explanation:

1400 x $ x $ = 1050   $\Rightarrow$   $ x $ =$ \dfrac{1050}{1400} $=$ \dfrac{3}{4} $

2692.(12 + 22 + 32 + ... + 102) = ?
330
345
365
385
Explanation:

We know that (12 + 22 + 32 + ... + $ n $2) =$ \dfrac{1}{6} n $$\left( n + 1\right)$$\left(2 n + 1\right)$

Putting $ n $ = 10, required sum =$ \left(\dfrac{1}{6} \times 10 \times 11 \times 21\right) $= 385

2698.Which one of the following numbers is completely divisible by 99?
3572404
135792
913464
114345
Explanation:

99 = 11 x 9, where 11 and 9 are co-prime.

By hit and trial, we find that 114345 is divisible by 11 as well as 9. So, it is divisible by 99.

2700.$\left(51+ 52 + 53 + ... + 100\right)$ = ?
2525
2975
3225
3775
Explanation:

This is an A.P. in which $ a $ = 51, $ l $ = 100 and $ n $ = 50.

$\therefore$Sum =$ \dfrac{n}{2} $$\left( a + l \right)$=$ \dfrac{50}{2} $x (51 + 100)   = 25 x 151   = 3775.

2701.1904 x 1904 = ?
3654316
3632646
3625216
3623436
Explanation:

1904 x 1904= (1904)2

= (1900 + 4)2

= (1900)2 + (4)2 + $\left(2 \times 1900 \times 4\right)$

= 3610000 + 16 + 15200.= 3625216.

10945.1 + 2 + 3 + … + 40 = ?
760
780
800
820
Explanation:


Sum of first n natural numbers = $\dfrac{n × (n + 1)}{2}$
Sum of first 40 natural numbers = $\dfrac{40 × 41}{2}$
= 20 × 41
= 820


Share with Friends