$x$ n - 1 will be divisibly by $ x $ + 1 only when $ n $ is even.
(4915 - 1) = {(72)15 - 1} = (730 - 1), which is divisible by (7 +1), i.e., 8.
Given sum
= 9 +$ \dfrac{3}{4} $+ 7 +$ \dfrac{2}{17} $-$ \left(9 +\dfrac{1}{15} \right) $
= (9 + 7 - 9) +$ \left(\dfrac{3}{4} +\dfrac{2}{17} -\dfrac{1}{15} \right) $
= 7 +$ \dfrac{765 + 120 - 68}{1020} $
= 7 +$ \dfrac{817}{1020} $
Prime numbers less than 50 are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
Their number is 15
Given Exp. =$ \dfrac{800}{64} $x$ \dfrac{1296}{36} $= 450
On dividing, we get
75) 8485 (113
75
----
98
75
----
235
225
----
10
----
Required number = (8485 - 10) // Because 10 < (75 - 10) = 8475.
639 is not divisible by 7
2079 is divisible by each of 3, 7, 9, 11.
On dividing we get,
88) 9217 (104
88
----
417
352
----
65
----
Therefore, Required number = 9217 + (88 - 65) // Because (88 - 65) < 65.
= 9217 + 23
= 9240.
Let 4300731 - $ x $ = 2535618
Then $ x $, = 4300731 - 2535618 = 1765113
Given Exp. =$\dfrac{(a + b)^2 - (a - b)^2}{ab}$=$\dfrac{4ab}{ab}$= 4
Given Exp.= $\left(397\right)$2 + $\left(104\right)$2 + 2 x 397 x 104
= $\left(397 + 104\right)$2= $\left(501\right)$2
= $\left(500 + 1\right)$2
= $\left(500\right)$ 2+$\left (1\right)$2 + $\left(2 \times 500 \times 1\right)$
= 250000 + 1 + 1000= 251001
35423
+ 7164
+ 41720
---------
84307
- 28213
---------
56094
---------
317 x 89 = 317 x $\left(90 -1\right )$
=$ \left(317 \times 90 - 317\right)$
= $\left(28530 - 317\right)$
= 28213
For every natural number $ n $, (x $ n $ - $ a $$ n $) is completely divisible by (x - a).
Let $ x $ = 6$ q $ + 3.
Then, $ x $2 = (6q + 3)2
= 36$ q $2 + 36$ q $ + 9
= 6(6 q 2 + 6$ q $ + 1) + 3
Thus, when $ x $2 is divided by 6, then remainder = 3.
When $ n $ is even. $\left( x^ n - a ^n\right)$ is completely divisibly by ( x + a )
(17200 - 1200) is completely divisible by (17 + 1), i.e., 18.
$\Rightarrow$ (17200 - 1) is completely divisible by 18.
$\Rightarrow$ On dividing 17200 by 18, we get 1 as remainder.
1400 x $ x $ = 1050 $\Rightarrow$ $ x $ =$ \dfrac{1050}{1400} $=$ \dfrac{3}{4} $
We know that (12 + 22 + 32 + ... + $ n $2) =$ \dfrac{1}{6} n $$\left( n + 1\right)$$\left(2 n + 1\right)$
Putting $ n $ = 10, required sum =$ \left(\dfrac{1}{6} \times 10 \times 11 \times 21\right) $= 385
99 = 11 x 9, where 11 and 9 are co-prime.
By hit and trial, we find that 114345 is divisible by 11 as well as 9. So, it is divisible by 99.
This is an A.P. in which $ a $ = 51, $ l $ = 100 and $ n $ = 50.
$\therefore$Sum =$ \dfrac{n}{2} $$\left( a + l \right)$=$ \dfrac{50}{2} $x (51 + 100) = 25 x 151 = 3775.
1904 x 1904= (1904)2
= (1900 + 4)2
= (1900)2 + (4)2 + $\left(2 \times 1900 \times 4\right)$
= 3610000 + 16 + 15200.= 3625216.
Sum of first n natural numbers = $\dfrac{n × (n + 1)}{2}$
Sum of first 40 natural numbers = $\dfrac{40 × 41}{2}$
= 20 × 41
= 820