Calculate the percentage of error in his result.
Since 3x / 2 = x / (2 / 3)
$ x $% of $ y $=$\left(\dfrac{x}{100}\times y \right)$=$\left(\dfrac{y}{100}\times x \right)$
Increase in 10 years = (262500 - 175000) = 87500.
Increase% =$ \left(\dfrac{875 00}{175000} \times 100\right) $% = 50%.
$\therefore$ Required average =$ \left(\dfrac{50}{10} \right) $% = 5%.
Quantity of pure acid =8×$\dfrac{20}{100}$=1.6
Let the sum paid to Y per week be Rs. $ z $.
Then, $ z $ + 120% of $ z $ = 550.
$\Rightarrow z $ +$ \dfrac{120}{100} z $ = 550
$\Rightarrow \dfrac{11}{5} z $ = 550
$\Rightarrow z $ =$ \left(\dfrac{550 \times 5}{11} \right) $ = 250.
Actual price = Rs.25 + Rs.2.50 = Rs.27.5
Saving = Rs.2.5
Saving percent
=$\dfrac{2.5}{27.5}$×100=$\dfrac{250}{27.5}$=$\dfrac{2500}{275}$=$\dfrac{100}{11}$=9$\dfrac{1}{11}$% $\approx$ 9%
Suppose originally he had $ x $ apples.
Then, (100 - 40)% of $ x $ = 420.
$\Rightarrow \dfrac{60}{100} \times x $ = 420
$\Rightarrow x $ =$ \left(\dfrac{420 \times 100}{60} \right) $ = 700.
$20$% of$ a=b \implies \dfrac{20}{100}a=b.$
$\therefore b$% of 20$=\left(\dfrac{b}{100}\times 20\right)=\left(\dfrac{20}{100}a \times \dfrac{1}{100}\times 20\right)=\dfrac{4}{100}a=4 $% of a$ $
- Ratio and Proportion Test 4
- Percentage Test 2
- Percentage Test 3
- Percentage Test 4
- Percentage Test 5
- Percentage Test 6
- Ratio and Proportion Test 1
- Ratio and Proportion Test 2
- Ratio and Proportion Test 3
- Percentage Test 1
- Average Test 1
- Average Test 2
- Average Test 3
- Interest Test 1
- Interest Test 2
- Interest Test 3
- Interest Test 4
- Interest Test 5
- Time and Distance Test 3
- Number system Test 2
- Partnership Test 1
- Partnership Test 2
- Profit,Loss and Discount Test 1
- Profit,Loss and Discount Test 2
- Profit,Loss and Discount Test 3
- Time and Distance Test 1
- Time and Distance Test 2
- Number System Test 1
- Time and Work Test 1
- Time and Work Test 2
- Time and Work Test 3
- Time and Work Test 4
- Time and Work Test 5
- Time and Work Test 6
- Time and Work Test 7