The sum of first 45 natural numbers is:
Let Sn =1 + 2 + 3 + ... + 45. This is an A.P. in which a =1, d =1, n = 45.
Sn =$ \dfrac{n}{2} $[2$ a $ + $\left( n - 1\right)$ d ]=$ \dfrac{45}{2} $ x [2 x 1 + (45 - 1) x 1]=$ \dfrac{45}{2} $x 46= 45 x 23
= 45 x (20 + 3)
= 45 x 20 + 45 x 3
= 900 + 135
= 1035.
Shorcut Method:
Sn =$ \dfrac{n(n + 1)}{2} $=$ \dfrac{45(45 + 1)}{2} $= 1035.