If a sum of money trebles itself in 40 years,what is the rate of interest?
-----------------------------------------------------------------------------------
Solution 1
-----------------------------------------------------------------------------------
Let the sum of money be Rs.x
After 40 years, this becomes 3x
Simple Interest = $\left(3x - x\right)$ = 2x
$\text{Simple Interest = }\dfrac{\text{PRT}}{100}$
$2x =\dfrac{x \times \text{R} \times 40}{100}$
$2 =\dfrac{\text{R} \times 40}{100}$
$200 =40\text{R}$
$\text{R} = 5\%$
-----------------------------------------------------------------------------------
Solution 2
-----------------------------------------------------------------------------------
If a sum of money becomes n times in T years at simple interest, then the rate of interest per annum can be given be
$\text{R = }\dfrac{100(\text{n}-1)}{\text{T}}\%$
n = 3
T = 40
$\text{R = }\dfrac{100(\text{n}-1)}{\text{T}} = \dfrac{100(3-1)}{40} = \dfrac{100 \times 2}{40} = \dfrac{100}{20} = 5\%$