Which of the following statements is not correct?
$\log_{10}{10}$ = 1
log (2 + 3) = log (2 x 3)
$\log_{10}{1}$= 0
log (1 + 2 + 3) = log 1 + log 2 + log 3
Explanation:
(a)Since $\log_{a}{a}$=1,so $\log_{10}{10}$=1.
(b)log (2 + 3) = log 5 and log (2 x 3) = log 6 = log 2 + log 3
=>log (2 + 3) $\neq $log (2 x 3)
(c) since,$\log_{a}{1}$=0,so $\log_{10}{1}$=0.
d) log (1 + 2 + 3) = log 6 = log (1 x 2 x 3) = log 1 + log 2 + log 3.
So, (b) is incorrect.
(a)Since $\log_{a}{a}$=1,so $\log_{10}{10}$=1.
(b)log (2 + 3) = log 5 and log (2 x 3) = log 6 = log 2 + log 3
=>log (2 + 3) $\neq $log (2 x 3)
(c) since,$\log_{a}{1}$=0,so $\log_{10}{1}$=0.
d) log (1 + 2 + 3) = log 6 = log (1 x 2 x 3) = log 1 + log 2 + log 3.
So, (b) is incorrect.