Easy Tutorial
For Competitive Exams

Write $\sqrt{\dfrac{32}{144}}$ in the simplified form $a\sqrt{n}$

$\dfrac{\sqrt{32}}{3}$
$\dfrac{\sqrt{2}}{13}$
$\dfrac{\sqrt{2}}{3}$
$\dfrac{\sqrt{3}}{2}$
Explanation:

$\sqrt{\dfrac{32}{144}}=\dfrac{\sqrt{32}}{\sqrt{144}}$[using the rule $\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$]

=$\dfrac{(\sqrt{16}\times \sqrt{2})}{12}$ [using the rule $\sqrt{(a \times b)}=\sqrt{a} \times \sqrt{b}$]

=$\dfrac{4 \sqrt{2}}{12}$ [simplify $\dfrac{4}{12}$]

=$\dfrac{\sqrt{2}}{3}$

Additional Questions

simplify $\dfrac{10\sqrt{3}}{\sqrt{5}}$

Answer

Simplify $\dfrac{2\sqrt{3}}{5}+\sqrt{108}$

Answer

Rationalise the denominaor in $\dfrac{7}{\sqrt{3}+2}$

Answer

Rationalise the denominator in $\dfrac{2}{1-\sqrt{2}}$

Answer

Simplify 3m8n3 $\div$ (3m8n3)0

Answer

Simplify : (3a)-2

Answer

Simplify : a4b2 x a2b2

Answer

Simplify : 5(8x4 $\div$ 2x6)

Answer

Simplify : $\left( \dfrac{5a}{b^{2}}\right)^{2}$

Answer

Simplify : 5*82/3

Answer
Share with Friends
Privacy Copyright Contact Us