P.W of Rs.12,880 due 8 months hence =Rs.$\dfrac{12,880 \times 100}{100+(18 \times \dfrac{8}{12})}$
=Rs.$\dfrac{12,880 \times 100}{112}$
=Rs.11,500
S.I. on Rs. (260 - 20) for a given time = Rs. 20.
S.I. on Rs. 240 for half the time = Rs. 10.
T.D. on Rs. 250 = Rs. 10.
T.D on Rs. 260 =Rs.$[\dfrac{10}{250} \times 260 ]$=Rs.10.40
Required money = P.W. of Rs. 10028 due 9 months hence
=Rs.$[\dfrac{10028 \times 100}{100+(12 \times \dfrac{9}{12}})]$
=Rs.9200
Required sum= P.W. of Rs. 702 due 6 months + P.W. of Rs. 702 due 1 year hence
=Rs.$[(\dfrac{100\times 702}{100+8 \times \dfrac{1}{2}}) + (\dfrac{100 \times 702}{100+(8 \times 1)})]$
= Rs. (675 + 650)
= Rs. 1325.
C.P=Rs.3000
S.P=Rs.$[\dfrac{3600 \times 100}{100+(10\times 2)}]$=Rs.3000
Gain =0%
S.I. on Rs. (110 - 10) for a certain time = Rs. 10.
S.I. on Rs. 100 for double the time = Rs. 20.
T.D. on Rs. 120 = Rs. (120 - 100) = Rs. 20.
T.D on Rs. 110=Rs.$(\dfrac{20}{120} \times 110)=Rs.18.33$
sum=$\dfrac{S.I \times T.D}{(S.I)-(T.D)}$
=>$\dfrac{85 \times 80}{(85-80)}$
=Rs.1360.
P.W=Rs.$[\dfrac{100 \times 2310 }{100+(15 \times \dfrac{5}{2})}]$=Rs.1680
Present worth of Rs.8460 due in 8 months (after 4 months)
=$\dfrac{8640 \times 100}{100+(\dfrac{8}{12} \times 12}=\dfrac{8640}{108} \times 100$
Required sum=Rs.8000
900 - x = 2(x - 450) => x = Rs.600
C.P = 600 gain required is 25%
S.P = [(100+25) x 600] / 100 = Rs.750
Given that,
True discount = dollar 200
Simple interest = dollar 240
Time = 3 years
Consider,
Sum due=$\dfrac{(S.I.) \times (T.D.)}{(S.I.) - (T.D.)}$
=>Sum due=$\dfrac{(240) \times (200)}{(240) - (200)}$
⇒ Sum due = dollar. 1200
Now,
Rate = $\dfrac{(100) \times (S.I.)}{(Sum due ) \times (T)}$
⇒ Rate = $\dfrac{(100) \times (240)}{(1200 ) \times (3)}$
⇒ Rate = $\dfrac{24000}{3600}$
⇒ Rate = 6.66 %
Therefore, Sum due = dollar. 1200 and Rate = 6.66 %
Given that,
Time = 6 months =$\dfrac{1}{2}$ of year
Rate =6%
Consider,
True discount = $\dfrac{A∗R∗T}{100+(R∗T)}$
=>True discount = $\dfrac{x∗6∗\dfrac{1}{2}}{100+(6∗\dfrac{1}{2})}$
=>True discount =x*$(\dfrac{6}{2})*(\dfrac{2}{206})$
=>True discount =$\dfrac{6x}{206}$
=>True discount =$\dfrac{3x}{103}$
Now,
S.I = (Amount * R * T) / 100
Simple interest =(x*6 * $\dfrac{1}{2} \times \dfrac{1}{100}$)
=> Simple interest=$\dfrac{3x}{100}$
Therefore,
$\dfrac{3x}{100}$ –$\dfrac{3x}{103}$ = 2.25
⇒ (103*3x) – (100*3x) = 2.25 * 100 * 103
⇒ x =2575
Therefore, sum due = Rs. 2575.
Given,R=6%,T=10/12yrs,TD=Rs.26.25,A=?
TD=$\dfrac{A*R*T}{100+R*T}$
26.25=$\dfrac{A*6*\dfrac{10}{12}}{100+(6*\dfrac{10}{12})}$
26.25=$\dfrac{A*5}{105}$
A=>Rs.551.25
Given,
Rate = 12 %
Time = 9 months = $\dfrac{3}{4}$ years
Let amount be Rs.x. Then,
Consider,
True discount =$\dfrac{x \times R \times T}{100 + (R \times T)}$
⇒ 540 = $\dfrac{x∗12∗\dfrac{3}{4}}{100+(12∗\dfrac{3}{4})}$
⇒540 = $\dfrac{9x}{100+9}$
⇒ 540 = $\dfrac{9x}{109}$
⇒ 9x = 540 x 109
⇒ x = $\dfrac{540 \times 109}{9}$
x= Rs.6540
Amount = Rs. 6540.
P.W. = Rs. (6540 – 540) =Rs. 6000.
Given that,
Amount = RS. 104500
Time = 9/12 years=3/4 years
Rate = 6%
Now,
Banker's Discount, BD =$\dfrac{A*T*R}{100}$
=$\dfrac{104500×3/4×6}{100}$
=1045×3/4×6
= Rs. 4702.50
Present value, PW =$\dfrac{F}{1+T(\dfrac{R}{100})}$
=$\dfrac{104500}{1+(\dfrac{3}{4})(\dfrac{6}{100})}$
=Rs. 100000