Easy Tutorial
For Competitive Exams

The value of $\dfrac{(0.96)^3-(0.1)^3}{(0.96)^2+0.096-(0.1)^2}$ is

0.86
0.95
0.97
1.06
Explanation:

Given expression

=$ \dfrac{(0.96)^3- (0.1)^3}{(0.96)^2+ (0.96 \times 0.1) + (0.1)^2} $

= $ \left(\dfrac{a^3- b^3}{a^2 + ab + b^2} \right) $

= $\left( a - b \right)$= (0.96 - 0.1)= 0.86

Additional Questions

The value of $\dfrac{0.1 \times 0.1 \times 0.1 + 0.02 \times 0.02 \times 0.02}{0.2 \times 0.2 \times 0.2 + 0.04 \times 0.04 \times 0.04}$ is

Answer

If 2994 ÷ 14.5 = 172, then 29.94 ÷ 1.45 = ?

Answer

The correct expression of 6.$\overline{46}$ in the fractional form is:

Answer

The fraction 101 $\dfrac{27}{100000}$ in decimal for is:

Answer

$\dfrac{0.0203 \times 2.92}{0.0073 \times14.5 \times 0.7}$=?

Answer

4.036 divided by 0.04 gives :

Answer

3.87 - 2.59 = ?

Answer

Evaluate: $\dfrac{(2.39)^2-(1.61)^2}{3.39-1.61}$

Answer

What decimal of an hour is a second ?

Answer

The value of $\dfrac{(0.96)^3-(0.1)^3}{(0.96)^2+0.096-(0.1)^2}$ is

Answer
Share with Friends
Privacy Copyright Contact Us