At what rate of compound interest per annum will a sum of Rs. 1400 become Rs. 1573.04 in 2 years?
Let the rate be R% per annum
$ P\left(1 + \dfrac{R}{100}\right)^T $= 1573.04
$ 1400\left(1 + \dfrac{\text{R}}{100}\right)^2$ = 1573.04
$\left(1 + \dfrac{R}{100}\right)^2$ =$ \dfrac{1573.04}{1400}$ = $\dfrac{157304}{140000}$ = $\dfrac{11236}{10000}$
$\left(1 + \dfrac{R}{100}\right) $= $\sqrt{\dfrac{11236}{10000}}$ = $\dfrac{\sqrt{11236}}{\sqrt{10000}}$ =$\dfrac{106}{100} $
$\dfrac{R}{100} $= $ \dfrac{106}{100} - 1 $=$ \dfrac{6}{100}$
R = 6%