The sum of how many terms of the series 6 + 12 + 18 + 24 + ... is 1800 ?
This is an A.P. in which $ a $ = 6, $ d $ = 6 and Sn = 1800
Then,$ \dfrac{n}{2} $[2$ a $ +$\left ( n - 1\right)$$ d $] = 1800
$\Rightarrow$ $ \dfrac{n}{2} $[2 x 6 + $\left( n - 1\right)$ x 6] = 1800
$\Rightarrow$ 3$ n $ $\left(n + 1\right)$ = 1800
$\Rightarrow n \left(n + 1\right)$ = 600
$\Rightarrow n $2 + $ n $ - 600 = 0
$\Rightarrow n $2 + 25$ n $ - 24$ n $ - 600 = 0
$\Rightarrow n $$\left( n + 25\right)$ - 24$\left( n + 25\right)$ = 0
$\Rightarrow$ $\left( n + 25\right)$$\left( n - 24\right)$ = 0
$\Rightarrow n $ = 24
Number of terms = 24.