Easy Tutorial
For Competitive Exams

Two cards are drawn together at random from a pack of 52 cards. What is the probability of both the cards being Queens?

1/52
1/221
2/221
1/26
Explanation:

-----------------------------------------------------------------------------------------

Solution 1

-----------------------------------------------------------------------------------------

$n\left(S\right)$ = Total number of ways of drawing 2 cards from 52 cards = 52C2

Let E = event of getting two Queens

We know that there are total 4 Queens in the 52 cards

$Hence, n\left(E\right)$ = Number of ways of drawing 2 Queens out of 4= 4C2

$\text{P(E) = }\dfrac{\text{n(E)}}{\text{n(S)}} = \dfrac{4_{C_2}}{52_{C_2}}$

$= \dfrac{\left( \dfrac{4 \times 3}{2}\right)}{\left( \dfrac{52 \times 51}{2}\right)}$= $\dfrac{4\times 3}{ 52 \times 51}= \dfrac{3}{ 13 \times 51} = \dfrac{1}{ 13 \times 17} = \dfrac{1}{ 221}$

-----------------------------------------------------------------------------------------

Solution 2

-----------------------------------------------------------------------------------------

This problem can be solved using the concept of[Conditional Probability]

Let A be the event of getting a Queen in the first draw

Total number of Queens = 4

Total number of cards = 52

$\text{P(Queen in first draw) = }\dfrac{4}{52}$

Assume that the first event is happened. i.e., a Queen is already drawn in the first draw


and now B = event of getting a Queen in the second draw

Since 1 Queen is drawn in the first draw, Total number of Queens remaining = 3
Since 1 Queen is drawn in the first draw, Total number of cards = 52 - 1 = 51

$\text{P[Queen in second draw] = }\dfrac{3}{51}$

P[Queen in first draw and Queen in second draw] = P[Queen in first draw] × P[Queen in second draw]

$= \dfrac{4}{52} \times \dfrac{3}{51} = \dfrac{1}{13} \times \dfrac{1}{17} = \dfrac{1}{221}$

Additional Questions

Two cards are drawn together from a pack of 52 cards. The probability that one is a club and one is a diamond?

Answer

John and Dani go for an interview for two vacancies. The probability for the selection of John is 1/3 and whereas the probability for the selection of Dani is 1/5. What is the probability that only one of them is selected?

Answer

The probability A getting a job is 1/5 and that of B is 1/7 . What is the probability that only one of them gets a job?

Answer

Two dice are thrown simultaneously. What is the probability of getting two numbers whose product is even?

Answer

Two dice are tossed. The probability that the total score is a prime number is:

Answer

From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings?

Answer

A card is randomly drawn from a deck of 52 cards. What is the probability getting a five of Spade or Club?

Answer

In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is:

Answer

A bag contains 2 red, 3 green and 2 blue balls. Two balls are drawn at random. What is the probability that none of the balls drawn is blue?

Answer

Two cards are drawn together at random from a pack of 52 cards. What is the probability of both the cards being Queens?

Answer
Share with Friends
Privacy Copyright Contact Us