Mr. Mani invested an amount of Rs. 12000 at the simple interest rate of 10% per annum and another amount at the simple interest rate of 20% per annum. The total interest earned at the end of one year on the total amount invested became 14% per annum. Find the total amount invested.
-------------------------------------------------------------------------------------
Solution 1
-------------------------------------------------------------------------------------
Let his investments be Rs.12000 and Rs.x
Rs. 12000 is invested at the simple interest rate of 10% per annum for 1 year
$\text{Simple Interest = }\dfrac{\text{PRT}}{100} = \dfrac{12000 \times 10 \times 1}{100} = \text{Rs. 1200}$
Rs. x is invested at the simple interest rate of 20% per annum for 1 year
$\text{Simple Interest = }\dfrac{\text{PRT}}{100} = \dfrac{x \times 20 \times 1}{100} = \text{Rs.}\dfrac{x}{5}$
$\text{Total interest = Rs.}\left(1200 + \dfrac{x}{5}\right)$
$\text{i.e., Rs.}\left(1200 + \dfrac{x}{5}\right)\text{ is the simple interest for Rs.(12000 + x) at 14% per annum for 1 year}$
$\Rightarrow \left(1200 + \dfrac{x}{5}\right) = \dfrac{(12000 + x) \times 14 \times 1}{100}$
$\Rightarrow 120000 + 20x = 14 \times 12000 + 14x$
$\Rightarrow 6x = 14 \times 12000 - 120000 = 48000$
$\Rightarrow x = 8000$
Total amount invested = 12000 + x = 12000 + 8000 = Rs. 20000
-------------------------------------------------------------------------------------
Solution 2
-------------------------------------------------------------------------------------If an amount P1 is lent out at simple interest of R1% per annum and another amount P2 at simple interest
rate of R2% per annum, then the rate of interest for the whole sum can be given by
$\text{R} = \dfrac{\text{P}_1\text{R}_1 + \text{P}_2\text{R}_2}{\text{P}_1+\text{P}_2}$
P1 = Rs. 12000, R1 = 10%
P2 = ?, R2 = 20%
R = 14%
$14 = \dfrac{12000 \times 10 + \text{P}_2 \times 20}{12000 +\text{P}_2}$
12000 $\times 14 + 14\text{P}_2$ = 120000 + 20$\text{P}_2$
6$\text{P}_2$ = 14$ \times 12000$ - 120000 = 48000
$\Rightarrow \text{P}_2 = 8000$
Total amount invested = (P1 + P2) = $\left(12000 + 8000\right)$ = Rs. 20000