simplify $\sqrt{125x^{3}}$
5x$\sqrt{5x}$
25x$\sqrt{5x}$
5x$\sqrt{25x}$
15x$\sqrt{5x}$
Explanation:
$\sqrt{125x^{3}}=\left(\sqrt{(25x^{2})} \times \sqrt{(5x)}\right)$ [using the rule $\sqrt{(a \times b)}=\sqrt{a} \times \sqrt{b}$]
=5x$\sqrt{5x}$
$\sqrt{125x^{3}}=\left(\sqrt{(25x^{2})} \times \sqrt{(5x)}\right)$ [using the rule $\sqrt{(a \times b)}=\sqrt{a} \times \sqrt{b}$]
=5x$\sqrt{5x}$