Easy Tutorial
For Competitive Exams

simplify $\sqrt{125x^{3}}$

5x$\sqrt{5x}$
25x$\sqrt{5x}$
5x$\sqrt{25x}$
15x$\sqrt{5x}$
Explanation:

$\sqrt{125x^{3}}=\left(\sqrt{(25x^{2})} \times \sqrt{(5x)}\right)$ [using the rule $\sqrt{(a \times b)}=\sqrt{a} \times \sqrt{b}$]

=5x$\sqrt{5x}$

Additional Questions

Write $\sqrt{\dfrac{32}{144}}$ in the simplified form $a\sqrt{n}$

Answer

simplify $\dfrac{10\sqrt{3}}{\sqrt{5}}$

Answer

Simplify $\dfrac{2\sqrt{3}}{5}+\sqrt{108}$

Answer

Rationalise the denominaor in $\dfrac{7}{\sqrt{3}+2}$

Answer

Rationalise the denominator in $\dfrac{2}{1-\sqrt{2}}$

Answer

Simplify 3m8n3 $\div$ (3m8n3)0

Answer

Simplify : (3a)-2

Answer

Simplify : a4b2 x a2b2

Answer

Simplify : 5(8x4 $\div$ 2x6)

Answer

Simplify : $\left( \dfrac{5a}{b^{2}}\right)^{2}$

Answer
Share with Friends
Privacy Copyright Contact Us