Number of cars | Frequency |
---|---|
0 -10 | 7 |
10-20 | 14 |
20-30 | 13 |
30- 40 | 12 |
40-50 | 20 |
50-60 | 11 |
60- 70 | 15 |
70-80 | 8 |
Given Data:
Modal class = 40 – 50, l = 40,
Class width (h) = 10, $f_m$ = 20, $f_{1}$ = 12 and $f_{2}$ = 11
Mode =$ l + [\dfrac{(f_m – f_{1})}{(2f_m – f_{1} – f_{2})}] × h$ |
Substitute the values
Mode = 40 + $[\dfrac{(20 – 12)}{(40 – 12 – 11)}]$ × 10
= 40 + $(\dfrac{80}{17})$
= 40 + 4.7
= 44.7
Thus, the mode of the given data is 44.7 cars.