$TD = \dfrac{BG \times 100} {TR}$
$=\dfrac{540 \times 100}{6 \times 12}= \dfrac{90 \times 100}{12}$
$= \dfrac{15 \times 100}{2} = Rs.750$
BG = BD - TD
=> 540 = BD - 750
=> BD = 540 + 750 = 1290
T.D. =$ \left(\dfrac{B.G. \times 100}{Rate \times Time} \right) $= Rs.$ \left(\dfrac{24 \times 100}{10 \times 2} \right) $= Rs. 120. |
$\therefore$ P.W. =$ \dfrac{100 \times T.D.}{Rate \times Time} $= Rs.$ \left(\dfrac{100 \times 120}{10 \times 2} \right) $= Rs. 600. |
Let, B.D = Re. 1.
Then, B.G. = Re.$ \dfrac{3}{25} $. |
$\therefore$ T.D. = (B.D. - B.G.) = Re.$ \left(1 -\dfrac{3}{25} \right) $= Re.$ \dfrac{22}{25} $. |
Sum =$ \left(\dfrac{1 \times (22/25)}{1-(22/25)} \right) $= Rs.$ \dfrac{22}{3} $. |
S.I. on Rs.$ \dfrac{22}{3} $for 1$ \dfrac{1}{2} $years is Re. 1. |
$\therefore$ Rate = | $\left(\dfrac{100\times1}{22/3\times3/2}\right)$ | =$ \dfrac{100}{11} $= 9$ \dfrac{1}{11} $%. |
Present Worth, PW = F - TD = 540 - 90 = Rs. 450
Simple Interest on the Present Worth = True Discount
Hence Simple Interest on 450 = 90 ------[Equation 1]
Simple Interest on the face value = Bankers Discount
=> Simple Interest on 540 = Bankers Discount
From Equation 1, Simple Interest on 450 = 90
Hence, Simple Interest on 540 = $\dfrac{90}{450} \times 540= \dfrac{540}{5}$ = Rs. 108
=> Bankers Discount = Rs. 108
B.D. for $\dfrac{3}{2}$ years | = Rs. 558. |
B.D. for 2 years | = Rs.$ \left(558 \times\dfrac{2}{3} \times 2\right) $ |
= Rs. 744 |
T.D. for 2 years = Rs. 600.
$\therefore$ Sum =$ \dfrac{B.D. \times T.D.}{B.D. - T.D} $= Rs.$ \left(\dfrac{744 \times 600}{144} \right) $= Rs. 3100. |
Thus, Rs. 744 is S.I. on Rs. 3100 for 2 years.
$\therefore$ Rate =$ \left(\dfrac{100 \times 744}{3100 \times 2} \right) $%= 12% |
B.G. =$ \dfrac{(T.D.)^2}{P.W.} $= Rs.$ \left(\dfrac{36 \times 36}{800} \right) $= Rs. 1.62 |
$\therefore$ B.D. = (T.D. + B.G.) = Rs. (36 + 1.62) = Rs. 37.62
$F =\dfrac{BD \times TD}{BD - TD}$= $\dfrac{36 \times 30}{(36 - 30)}$
$=\dfrac{36 \times 30}{6} = 36 \times 5 = Rs.180$
S.I. on Rs. 1600 = T.D. on Rs. 1680.
$\therefore$ Rs. 1600 is the P.W. of Rs. 1680, i.e., Rs. 80 is on Rs. 1600 at 15%.
P.W. = Rs. (540 - 90) = Rs. 450.
$\therefore$ S.I. on Rs. 450 = Rs. 90.
S.I. on Rs. 540 = Rs.$ \left(\dfrac{90}{450} \times 540\right) $= Rs. 108. |
$\therefore$ B.D. = Rs. 108.
Sum =$ \dfrac{B.D. \times T.D.}{B.D. - T.D.} $= Rs.$ \left(\dfrac{72 \times 60}{72 - 60} \right) $= Rs.$ \left(\dfrac{72 \times 60}{12} \right) $= Rs. 360. |