Easy Tutorial
For Competitive Exams

Aptitude Arithmetic & Geometric Progression Practice QA

2558.The expression (11.98 $\times$ 11.98 + 11.98 $\times$ x + 0.02 $\times$ 0.02) will be a perfect square for $x$ equal to:
0.02
0.2
0.04
0.4
Explanation:

Given expression = (11.98)2 + (0.02)2 + 11.98 x $x$.

For the given expression to be a perfect square, we must have

11.98 x $x$ = 2 x 11.98 x 0.02 or $x$ = 0.04

2559.$\dfrac{(0.1667)(0.8333)(0.3333)}{(0.2222)(0.6667)(0.1250)}$ is approximately equal to:
2
2.40
2.43
2.50
Explanation:

Given expression =$ \dfrac{(0.3333)}{(0.2222)} $ x $ \dfrac{(0.1667)(0.8333)}{(0.6667)(0.1250)} $

=$\dfrac{\dfrac{1}{6}\times\dfrac{5}{6}}{\dfrac{2}{3}\times\dfrac{125}{1000}}$

=$ \left(\dfrac{3}{2} \times\dfrac{1}{6} \times\dfrac{5}{6} \times\dfrac{3}{2} \times 8\right) $

=$ \dfrac{5}{2} $

= 2.50

2560.3889 + 12.952 - ? = 3854.002
47.095
47.752
47.932
47.95
Explanation:

Let 3889 + 12.952 - $ x $ = 3854.002.

Then $ x $ = [3889 + 12.952] - 3854.002

= 3901.952 - 3854.002

= 47.95.

2562.$\dfrac{4.2 \times 4.2 - 1.9 \times 1.9}{2.3 \times 6.1}$ is equal to :
0.5
1.0
20
22
Explanation:

Given Expression =$\dfrac{(a^2 - b^2)}{(a+b)(a-b)}$=$\dfrac{(a^2 - b^2)}{(a^2 - b^2)}$=1

2564.The price of commodity X increases by 40 paise every year, while the price of commodity Y increases by 15 paise every year. If in 2001, the price of commodity X was Rs. 4.20 and that of Y was Rs. 6.30, in which year commodity X will cost 40 paise more than the commodity Y ?
2010
2011
2012
2013
Explanation:

Suppose commodity X will cost 40 paise more than Y after $ z $ years.

Then, [4.20 + 0.40$z$]- [6.30 + 0.15$ z $] = 0.40

$\Rightarrow$ 0.25$ z $ = 0.40 + 2.10

$\Rightarrow z $ =$ \dfrac{2.50}{0.25} $=$ \dfrac{250}{25} $= 10.

$\therefore$ X will cost 40 paise more than Y 10 years after 2001 i.e., 2011.

2566.Which of the following fractions is greater than $\dfrac{3}{4}$ and less than $\dfrac{5}{6}$ ?
$ \dfrac{1}{2} $
$ \dfrac{2}{3} $
$ \dfrac{4}{5} $
$ \dfrac{9}{10}$
Explanation:

$ \dfrac{3}{4} $= 0.75, $ \dfrac{5}{6} $= 0.833, $ \dfrac{1}{2} $= 0.5, $ \dfrac{2}{3} $= 0.66, $ \dfrac{4}{5} $= 0.8, $ \dfrac{9}{10} $= 0.9.

Clearly, 0.8 lies between 0.75 and 0.833.

$\therefore \dfrac{4}{5} $lies between$ \dfrac{3}{4} $and$ \dfrac{5}{6} $.

2569.The value of $\dfrac{489.1375 \times 0.0483 \times 1.956}{0.0873 \times 92.581 \times 99.749}$ is closest to:
0.006
0.06
0.6
6
Explanation:

$ \dfrac{489.1375 \times 0.0483 \times 1.956}{0.0873 \times 92.581 \times 99.749} \approx \dfrac{489 \times 0.05 \times 2}{0.09 \times 93 \times 100} $

=$ \dfrac{489}{9 \times 93 \times 10} $

=$ \dfrac{163}{279} $x$ \dfrac{1}{10} $

=$ \dfrac{0.58}{10} $

= 0.058 $\approx$ 0.06.

2573.The least among the following is:
0.2
1 ÷ 0.2
0.20
(0.2)2
Explanation:

1÷0.2 =$\dfrac{1}{0.2} $=$ \dfrac{10}{2} $= 5;

0.2 = 0.222...;

(0.2)2 = 0.04.

0.04 < 0.2 < 0.22....<5.

Since 0.04 is the least, so (0.2)2is the least.

2574.$\dfrac{5\times1.6 - 2 \times 1.4}{1.3}$=?
0.4
1.2
1.4
4
Explanation:

Given Expression =$ \dfrac{8 - 2.8}{1.3} $=$ \dfrac{5.2}{1.3} $=$ \dfrac{52}{13} $= 4.

2575.How many digits will be there to the right of the decimal point in the product of 95.75 and .02554 ?
5
6
7
None of these
Explanation:

Sum of decimal places = 7.

Since the last digit to the extreme right will be zero [since 5 x 4 = 20], so there will be 6 significant digits to the right of the decimal point.

Share with Friends