As we see the series 1,4,9,18......
we see that $
2^{1}$-1 = 1
which is first term
$
2^{2}$-0 = 4
which is second term
$2^{3}$+1 = 9
third term
$
2^{4}$+2 = 18
fourth term
$2^{5}$+3 = 35
fifth term
$2^{6}$+4 = 68
sixth term
$2^{7}$+5 = 133
seventh term
$
2^{8}$+6 = 262
eighth term
so answer is 262
Say M came first. The remaining 4 positions can be filled in 4! = 24 ways.
Now M came in second. N can finish the race in 3rd, 4th or 5th position. So total ways are 3 x 3! = 18.
M came in third. N can finish the race in 2 positions. 2 x 3! = 12.
M came in second. N can finish in only one way. 1 x 3! = 6
Total ways are 24 + 18 + 12 + 6 = 60.
Shortcut:Total ways of finishing the race = 5! = 120. Of which, M comes before N in half of the races, N comes before M in half of the races. So 120 / 2 = 60.
Junior student = 1000
Senior student = 800
60 sibling pair = 2 x 60 = 120 student
Probability that 1 student chosen from senior = 800
Probability that 1 student chosen from junior = 1000
Therefore,1 student chosen from senior and 1 student chosen from junior
n(s) = 800 x 1000 = 800000
Two selected student are from a sibling pair
n(E) = 120C2 = 7140
Therefore
P(E) = n(E)/n(S) = 7140⁄800000
50 p : 1 coin, 25 p : 2 coins, 10 p: 1 coin, 5 p : 1 coin, Total: 1.15 p
The given pattern is (Prime number - consecutive numbers starting with 1).
1 = 2 - 1
1 = 3 - 2
2 = 5 - 3
3 = 7 - 4
6 = 11 - 5
7 = 13 - 6
10 = 17 - 7
11 = 19 - 8
14 = 23 - 9
(I) A Lorry which has started At 6.00 a.m will cross how many Lorries.
(II) A Lorry which has started At 6.00 p.m will cross how many Lorries.
I. The Lorry reaches Mysore by 3 PM so it meets all the Lorries which starts after 6 a.m and before 3 p.m. So 9 lorries. Also the Lorry which starts at night 10 p.m on the previous day at Mysore reaches Bangalore in morning 7 a.m. So it also meets that Lorry. So the Lorry which starts at 6:00 am will cross 10 Lorries.
II. The lorry which has started at 6 p.m reaches destination by 3 a.m. Lorries which start at the opposite destination at 10 am reaches its destination at 7 pm. So all the lorries which starts at 10 am to 10 pm meets this lorry . So in total 13.
Coding = Sum of position of alphabets x Number of letters in the given word
GOOD = (7 + 15 + 15 + 4 ) x 4 = 164
BAD = (2 + 1 + 4) x 3 = 21
UGLY = (21 + 7 + 12 + 25) x 4 = 260
So, JUMP = (10 + 21 + 13 + 16) x 4 = 240
(1) Number of matches played when each team plays with each other twice.
(2) Number of matches played when each team plays each other once.
(3) Number of matches when knockout of 16 team is to be played
1. Number of ways that each team played once with other team = 16C216C2. To play with each team twice = 16 x 15 = 240
2. 16C216C2 = 120
3. Total 4 rounds will be played. Total number of matches required = 8 + 4 + 2 + 1 = 15
Formula: 15C215C2 x 2. So 15 x (15 - 1) = 15 x 14 = 210
We can understand it by writing in words
One
One time 1 that is = 11
Then two times 1 that is = 21
Then one time 2 and one time 1 that is = 1211
Then one time one, one time two and two time 1 that is = 111221
And last term is three time 1, two time 2, and one time 1 that is = 312211
So our next term will be one time 3 one time 1 two time 2 and two time 1
13112221 and so on.
N=(4*5-1)*5*5*5=2375
where
4 cases of first digit {2,4,6,8}
5 cases of second digit {0,2,4,6,8}
1 case of 44 for two leftmost digit
5 cases of third digit {1,3,5,7,9}
5 cases of fourth digit {1,3,5,7,9}
5 cases of fifth digit {1,3,5,7,9}
13 - 46 - 8 - 180 + 210 + 75 = 64
m = 3
n = 4
m - n = - 1.
Possible ways of keeping atleast 1 blue and 1 red ball are drawing cans like (6,2) (5,3) (4,4)
(6,2) =>7C6×5C27C6×5C2 => 710 = 70
(5,3) =>7C5×5C37C5×5C3 => 21 x 10 = 210
(4,4) =>7C4×5C47C4×5C4 => 35 x 5 = 175
70 + 210 + 175 = 455.
$1^{2}+1$=2
$2^{2}-2$=2
$3^{2}+3$=12
$4^{2}-4$=12
$5^{2}+5$=30
$6^{2}-6$=30
So, 7th term is $7^{2}+7$=56
and the 8th term is=$8^{2}-8$=56
So, the answer is 56.
2121 - 1 = 1
2222 + 0 = 4
2323 + 1 = 9
2424 + 2 = 18
2525 + 3 = 35
So 2626 + 4 = 68, 2727 + 5 = 133, 2828 +6 = 262
Answer is 68, 133, 262.
Let x be the total number of participants including Rahul.
Excluding rahul = (x - 1)
15(x-1)+56(x-1)15(x-1)+56(x-1) = x
31x - 31 = 30x
Total number of participants x = 31.
a) they take 75 seconds to pass each other in opposite direction.
b) they take 37.5 seconds to pass each other in same direction
Let the speeds be x and y
When moves in same direction the relative speed,
x - y = (85-80)37.5(85-80)37.5 = 0.13 - - - - - (I)
When moves in opposite direction the relative speed, x + y = 165/75 = 2.2 - - - - (II)
Now, equation I + equation II gives, 2x = 0.13 + 2.2 = 2.33 => x = 1.165
From equation l, x - y = 0.13 => y = 1.165 - 0.13 = 1.035
Therefore the speeds are 1.165 yards/sec and 1.035 yards/sec.
Let fathers age = 10x + y
Sons age = 10y + x (As, it is got by reversing digits of fathers age)
At that point
(10x + y) - 1 = 2{(10y + x) - 1}
=> x = (19y - 1)/8
Let y = 3 then x = 7.
For any other y value, x value combined with y value doesnt give a realistic age (like fathers age 120 etc)
So, this has to be solution.Hence fathers age = 73.
Sons age = 37.
Assume that height of the hill is 440 miles.
Let speed of Jack when going up = x miles/minute
and speed of Jill when going up = y miles/minute
Then speed of Jack when going down = 1.5x miles/minute
and speed of Jill wen going up = 1.5y miles/minute
Case 1 :Jack met jill 20 miles from the top. So Jill travelled 440 - 20 = 420 miles.
Time taken for Jack to travel 440 miles up and 20 miles down = Time taken for Jill to travel 420 miles up
440x+201.5x=420y440x+201.5x=420y
681.5x=420y681.5x=420y
68y = 63x
y = 63x6863x68 ---(1)
Case 2 :Time taken for Jack to travel 440 miles up and 440 miles down = Time taken for Jill to travel 440 miles up and 440 miles down - 1
440x+4401.5x=440y+4401.5y440x+4401.5x=440y+4401.5y - 1
440×53(1y−1x)=1440×53(1y−1x)=1-----(2)
Substitute (2) in (1) we get
x = 440×5×53×6340×5×53×63
t = 440×53(1x)440×53(1x)
t = 12.6min.
I. D was not the last, A was not the first.
II. The first is not C and B was not the tallest.
D because A is not first neither C and B is not the tallest person. The only person will be first is D.
So option (C). We can answer this question using both the statements together.