How many 3 digit numbers are divisible by 6 in all ?
Required numbers are 102, 108, 114, ... , 996
This is an A.P. in which $ a $ = 102, $ d $ = 6 and $ l $ = 996
Let the number of terms be $ n $. Then,
$ a $ + $\left( n - 1\right)$ d = 996
$\Rightarrow$ 102 + $\left( n - 1\right)$ x 6 = 996
$\Rightarrow$ 6 x $\left( n - 1\right)$ = 894
$\Rightarrow$ $\left( n - 1\right)$ = 149
$\Rightarrow$ $ n $ = 150.