476 ** 0 is divisible by both 3 and 11. The non-zero digits in the hundreds and tens places are respectively:
Let the given number be 476 $x$$y$ 0.
Then $\left(4 + 7 + 6 + x + y + 0\right)$ = $\left(17 + x + y \right)$ must be divisible by 3.
And, $\left(0 + x + 7\right)$ - $\left( y + 6 + 4\right)$ = $\left( x - y -3\right)$ must be either 0 or 11.
$ x $ - $ y $ - 3 = 0 $\Rightarrow y $ = $ x $ - 3
17 + $x$ + $y$ = $\left(17 + x + x - 3\right)$ = 2$ x $ + 14
$\Rightarrow x $= 2 or $ x $ = 8.
$\therefore x $ = 8 and $ y $ = 5.