24 = 3 x8, where 3 and 8 co-prime.
Clearly, 35718 is not divisible by 8, as 718 is not divisible by 8.
Similarly, 63810 is not divisible by 8 and 537804 is not divisible by 8.
Consider option (D),
Sum of digits = (3 + 1 + 2 + 5 + 7 + 3 + 6) = 27, which is divisible by 3.
Also, 736 is divisible by 8.
$\therefore$ 3125736 is divisible by 3 x 8, i.e., 24.
5 | $x$ z = 13 x 1 + 12 = 25
--------------
9 | y - 4 y = 9 x z + 8 = 9 x 25 + 8 = 233
--------------
13| z - 8 $x$ = 5 x y + 4 = 5 x 233 + 4 = 1169
--------------
| 1 -12
585) 1169 (1
585
----------
584
----------
Therefore, on dividing the number by 585, remainder = 584.
87) 13601 (156
87
-------
490
435
-------
551
522
-------
29
-------
Therefore, the required number = 29.
Let the given number be 476 $x$$y$ 0.
Then $\left(4 + 7 + 6 + x + y + 0\right)$ = $\left(17 + x + y \right)$ must be divisible by 3.
And, $\left(0 + x + 7\right)$ - $\left( y + 6 + 4\right)$ = $\left( x - y -3\right)$ must be either 0 or 11.
$ x $ - $ y $ - 3 = 0 $\Rightarrow y $ = $ x $ - 3
17 + $x$ + $y$ = $\left(17 + x + x - 3\right)$ = 2$ x $ + 14
$\Rightarrow x $= 2 or $ x $ = 8.
$\therefore x $ = 8 and $ y $ = 5.
Given number = 97215 x 6
$\left(6 + 5 + 2 + 9\right)$ - $\left( x + 1 + 7\right)$ = $14 - x$, which must be divisible by 11.
$\therefore$ $ x $ = 3
Clearly, (2272 - 875) = 1397, is exactly divisible by N.
Now, 1397 = 11 x 127
$\therefore$ The required 3-digit number is 127, the sum of whose digits is 10.
987 = 3 x 7 x 47
So, the required number must be divisible by each one of 3, 7, 47
553681 $\rightarrow$ Sum of digits = 28, not divisible by 3
555181 $\rightarrow$ Sum of digits = 25, not divisible by 3
555681 is divisible by 3, 7, 47.
$ x $ = 13$ p $ + 11 and $ x $ = 17$ q $ + 9
$\therefore$ 13$ p $ + 11 = 17$ q $ + 9
$\Rightarrow$ 17$ q $ - 13$ p $ = 2
$\Rightarrow$ q=$ \dfrac{2 + 13p}{17} $
The least value of $ p $ for which q =$\dfrac{2 + 13 p }{17}$ is a whole number is $ p $ = 26
$\therefore x $ = $ \left(13 \times 26 + 11\right)$
= 338 + 11
= 349
Let $ n $ = 4$ q $ + 3. Then 2$ n $ = 8$ q $ + 6 = 4 $\left(2 q + 1\right ) $ + 2.
Thus, when 2$ n $ is divided by 4, the remainder is 2.
Let the two consecutive even integers be 2$n $ and $\left(2 n + 2\right) $. Then,
$\left(2n + 2\right)$2 = $\left(2 n + 2 + 2 n\right )$$\left(2 n + 2 - 2 n \right)$
= 2$\left(4 n + 2\right) $
= 4$\left(2 n + 1\right)$, which is divisible by 4.
- Simple Interest Test 3
- Decimal Fraction Test 2
- Decimal Fraction Test 1
- Probability Test 2
- Probability Test 1
- Permutation and Combinations Test 2
- Permutation and Combinations Test 1
- Logarithms Test 2
- Logarithms Test 1
- Time and Distance Test 3
- Time and Distance Test 2
- Time and Distance Test 1
- Compound Interest Test 2
- Compound Interest Test 1
- Divisibility Test 1
- Simple Interest Test 2
- Simple Interest Test 1
- Profit and Loss Test 3
- Profit and Loss Test 2
- Profit and Loss Test 1
- L.C.M and H.C.F Test 3
- L.C.M and H.C.F Test 2
- L.C.M and H.C.F Test 1
- Numbers Test 3
- Numbers Test 2
- Numbers Test 1
- Divisibility Test 3
- Divisibility Test 2