$\left(\dfrac{a}{b}\right)^{x-1}=\left(\dfrac{b}{a}\right)^{x-3}$, then the value of x is:
1/2
1
2
7/2
Explanation:
Given $\left(\dfrac{a}{b}\right)^{x-1}=\left(\dfrac{b}{a}\right)^{x-3}$
$\Rightarrow \left(\dfrac{a}{b}\right)^{x-1}=\left(\dfrac{a}{b}\right)^{-(x-3)} = \left(\dfrac{a}{b}\right)^{3-x}$
$\Rightarrow$ x - 1 = 3 - x
$\Rightarrow$2x = 4
$\Rightarrow$x = 2.
Given $\left(\dfrac{a}{b}\right)^{x-1}=\left(\dfrac{b}{a}\right)^{x-3}$
$\Rightarrow \left(\dfrac{a}{b}\right)^{x-1}=\left(\dfrac{a}{b}\right)^{-(x-3)} = \left(\dfrac{a}{b}\right)^{3-x}$
$\Rightarrow$ x - 1 = 3 - x
$\Rightarrow$2x = 4
$\Rightarrow$x = 2.