0.$\overline{53}$ = ?
$\dfrac{3}{99}$
$\dfrac{53}{99}$
Explanation:
0.$\overline{53}$ = $\dfrac{53}{99}$
0.$\overline{53}$ = $\dfrac{53}{99}$
0.$\overline{53}$ = ?
0.22$\overline{73}$ = ? |
Answer |
simplify $\sqrt{125x^{3}}$ |
Answer |
Write $\sqrt{\dfrac{32}{144}}$ in the simplified form $a\sqrt{n}$ |
Answer |
simplify $\dfrac{10\sqrt{3}}{\sqrt{5}}$ |
Answer |
Simplify $\dfrac{2\sqrt{3}}{5}+\sqrt{108}$ |
Answer |
Rationalise the denominaor in $\dfrac{7}{\sqrt{3}+2}$ |
Answer |
Rationalise the denominator in $\dfrac{2}{1-\sqrt{2}}$ |
Answer |
Simplify 3m8n3 $\div$ (3m8n3)0 |
Answer |
Simplify : (3a)-2 |
Answer |
Simplify : a4b2 x a2b2 |
Answer |