Easy Tutorial
For Competitive Exams

Aptitude Probability Theory

Formulas:

Experiment:

An operation which can produce some well-defined outcomes is called an experiment.

Random Experiment:

An experiment in which all possible outcomes are know and the exact output cannot be predicted in advance, is called a random experiment.

i.Examples:

ii.Rolling an unbiased dice.

iii.Tossing a fair coin.

iv.Drawing a card from a pack of well-shuffled cards.

Picking up a ball of certain colour from a bag containing balls of different colours.

Details:

i.When we throw a coin, then either a Head (H) or a Tail (T) appears.

ii.A dice is a solid cube, having 6 faces, marked 1, 2, 3, 4, 5, 6 respectively. When we throw a die, the outcome is the number that appears on its upper face.

iii.A pack of cards has 52 cards.

It has 13 cards of each suit, name Spades, Clubs, Hearts and Diamonds.

Cards of spades and clubs are black cards.

Cards of hearts and diamonds are red cards.

There are 4 honours of each unit.

There are Kings, Queens and Jacks. These are all called face cards.

Sample Space:

When we perform an experiment, then the set S of all possible outcomes is called the sample space.

Examples:

1.In tossing a coin, S = {H, T}

2.If two coins are tossed, the S = {HH, HT, TH, TT}.

3.In rolling a dice, we have, S = {1, 2, 3, 4, 5, 6}.

Event:

Any subset of a sample space is called an event.

Probability of Occurrence of an Event:

Let S be the sample and let E be an event.

Then, $E\subseteq S$

$\therefore P\left(E\right) = \dfrac{n\left(E\right)}{n\left(S\right)}$

Results on Probability:

i.$P\left(S\right)$ = 1

ii. $0\leq P(E)\leq 1 $

iii.$ P\left(\phi\right)$ = 0

iv. For any events A and B we have :$ P\left(A\cup B\right) = P(A) + P(B) -P(A\cap B)$

v.If $\overline{A}$ denotes (not-A) then P$ \left(\overline{A}\right)$ = 1- P(A)

2829.One card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is a face card Jack, Queen and King only?
$ \dfrac{1}{13} $
$ \dfrac{3}{13} $
$ \dfrac{1}{4} $
$ \dfrac{9}{52} $
Explanation:

Clearly, there are 52 cards, out of which there are 12 face cards.

$\therefore$ P [getting a face card] =$ \dfrac{12}{52} $=$ \dfrac{3}{13} $.

2837.Two dice are tossed. The probability that the total score is a prime number is:
$ \dfrac{1}{6} $
$ \dfrac{5}{12} $
$ \dfrac{1}{2} $
$ \dfrac{7}{9} $
Explanation:

Clearly, $ n \left(S\right)$ = $(6 \times 6)$ = 36.

Let E = Event that the sum is a prime number.

Then E= { (1, 1), (1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4, 3),
      (5, 2), (5, 6), (6, 1), (6, 5) }

$\therefore n \left(E\right)$ = 15.

$\therefore P\left(E\right)$ =$ \dfrac{n(E)}{n(S)} $=$ \dfrac{15}{36} $=$ \dfrac{5}{12} $.

2844.What is the probability of getting a sum 9 from two throws of a dice?
$ \dfrac{1}{6} $
$ \dfrac{1}{8} $
$ \dfrac{1}{9} $
$ \dfrac{1}{12} $
Explanation:

In two throws of a dice, $ n \left(S\right)$ = $(6 \times 6)$ = 36.

Let E = event of getting a sum ={(3, 6), (4, 5), (5, 4), (6, 3)}.

$\therefore P\left(E\right)$ =$ \dfrac{n(E)}{n(S)} $=$ \dfrac{4}{36} $=$ \dfrac{1}{9} $.

2846.Three unbiased coins are tossed. What is the probability of getting at most two heads?
$ \dfrac{3}{4} $
$ \dfrac{1}{4} $
$ \dfrac{3}{8} $
$ \dfrac{7}{8} $
Explanation:

Here S = {TTT, TTH, THT, HTT, THH, HTH, HHT, HHH}

Let E = event of getting at most two heads.

Then E = {TTT, TTH, THT, HTT, THH, HTH, HHT}.

$\therefore P\left(E\right) $ =$ \dfrac{n(E)}{n(S)} $=$ \dfrac{7}{8} $.

Probability:

  • Probability means ‘The extent to which something is probable; the likelihood of something happening or being the case’.
    Probability is quantitative measure of the chance of occurrence of a particular event.

  • Experiment:

  • An experiment is an operation which can produce well-defined outcomes.

  • Random Experiment:

  • If all the possible outcomes of an experiment are known but the exact output cannot be predicted in advance, that experiment is called a random experiment.

    Examples:

    Tossing of a fair coin:

    When we toss a coin, the outcome will be either Head (H) or Tail (T)

    Throwing an unbiased die:

    1.Die is a small cube used in games. It has six faces and each of the six faces shows a different number of dots from 1 to 6. Plural of die is dice.
    2.When a die is thrown or rolled, the outcome is the number that appears on its upper face and it is a random integer from one to six, each value being equally likely.

    Drawing a card from a pack of shuffled cards:

    1.A pack or deck of playing cards has 52 cards which are divided into four categories as given below
    Spades (♠)Clubs (♣)Hearts (♥)Diamonds (♦)
    2.Each of the above mentioned categories has 13 cards, 9 cards numbered from 2 to 10, an Ace, a King, a Queen and a jack
    3.Hearts and Diamonds are red faced cards whereas Spades and Clubs are black faced cards.
    4.Kings, Queens and Jacks are called face cards
    5.Taking a ball randomly from a bag containing balls of different colours

  • Sample Space:

  • Sample Space is the set of all possible outcomes of an experiment. It is denoted by S.

    Examples:

    1.When a coin is tossed, S = {H, T} where H = Head and T = Tail
    2.When a dice is thrown, S = {1, 2 , 3, 4, 5, 6}
    3.When two coins are tossed, S = {HH, HT, TH, TT} where H = Head and T = Tail

  • Event:

  • Any subset of a Sample Space is an event. Events are generally denoted by capital letters A, B , C, D etc.

    Examples:

    When a coin is tossed, outcome of getting head or tail is an event

    When a die is rolled, outcome of getting 1 or 2 or 3 or 4 or 5 or 6 is an event

  • Equally Likely Events:

  • Events are said to be equally likely if there is no preference for a particular event over the other.

    Examples:

    When a coin is tossed, Head (H) or Tail is equally likely to occur.
    When a dice is thrown, all the six faces (1, 2, 3, 4, 5, 6) are equally likely to occur.

  • Mutually Exclusive Events:

  • Two or more than two events are said to be mutually exclusive if the occurrence of one of the events excludes the occurrence of the other
    This can be better illustrated with the following examples
    1.When a coin is tossed, we get either Head or Tail. Head and Tail cannot come simultaneously. Hence occurrence of Head and Tail are mutually exclusive events.
    2.When a die is rolled, we get 1 or 2 or 3 or 4 or 5 or 6. All these faces cannot come simultaneously. Hence occurrences of particular faces when rolling a die are mutually exclusive events.
    Note : If A and B are mutually exclusive events, $ A \cap B$ = ϕ where ϕ represents empty set.
    3.Consider a die is thrown and A be the event of getting 2 or 4 or 6 and B be the event of getting 4 or 5 or 6. Then
    A = {2, 4, 6} and B = {4, 5, 6}
    Here$ A \cap B$ ≠ϕ. Hence A and B are not mutually exclusive events.

  • Independent Events:

  • Events can be said to be independent if the occurrence or non-occurrence of one event does not influence the occurrence or non-occurrence of the other.

    Example :

    When a coin is tossed twice, the event of getting Tail(T) in the first toss and the event of getting Tail(T) in the second toss are independent events. This is because the occurrence of getting Tail(T) in any toss does not influence the occurrence of getting Tail(T) in the other toss.

  • Simple Events:

  • In the case of simple events, we take the probability of occurrence of single events.

    Examples:

    1.Probability of getting a Head (H) when a coin is tossed 2.Probability of getting 1 when a die is thrown

  • Compound Events:

  • In the case of compound events, we take the probability of joint occurrence of two or more events.

    Examples:

    When two coins are tossed, probability of getting a Head (H) in the first toss and getting a Tail (T) in the second toss.

  • Algebra of Events:

  • Let A and B are two events with sample space S. Then
    1.$A \cup B$ is the event that either A or B or Both occur. (i.e., at least one of A or B occurs)
    2.$A \cap B$ is the event that both A and B occur
    3.$\overline{A}$is the event that A does not occur
    4.$\overline{A} \cap \overline{B}$ is the event that none of A and B occurs

  • Probability of an Event:

  • Let E be an event and S be the sample space. Then probability of the event E can be defined as
    P(E) =$\dfrac{n(E)}{n(S)}$
    where P(E) = Probability of the event E, n(E) = number of ways in which the event can occur and n(S) = Total number of outcomes possible

    Examples:

    1.A coin is tossed once. What is the probability of getting Head?
    Total number of outcomes possible when a coin is tossed = n(S) = 2 (∵ Head or Tail)
    E = event of getting Head = {H}. Hence n(E) = 1
    $\dfrac{n(E)}{n(S)}$=$\dfrac{1}{2}$

    2.Two dice are rolled. What is the probability that the sum on the top face of both the dice will be greater than 9?
    Total number of outcomes possible when a die is rolled = 6 (∵ any one face out of the 6 faces)
    Hence, total number of outcomes possible two dice are rolled, n(S) = 6 × 6 = 36
    E = Getting a sum greater than 9 when the two dice are rolled = {(4, 6), {5, 5}, {5, 6}, {6, 4}, {6, 5}, (6, 6)}
    Hence, n(E) = 6
    $\dfrac{n(E)}{n(S)}$=$\dfrac{6}{36}$=$\dfrac{1} {6}$

  • Addition Theorem:

  • Let A and B be two events associated with a random experiment. Then
    P(A U B) = P(A) + P(B) – P(A ∩ B)
    If A and B are mutually exclusive events, then P(A U B) = P(A) + P(B) because for mutually exclusive events, P(A ∩ B) = 0
    If A and B are two independents events, then
    P(A ∩ B) = P(A).P(B)

    Example :

    Two dice are rolled. What is the probability of getting an odd number in one die and getting an even number in the other die?
    Total number of outcomes possible when a die is rolled, n (S) = 6 (∵ any one face out of the 6 faces)
    Let A be the event of getting the odd number in one die = {1,3,5}. => n(A)= 3
    p(A)=$\dfrac{n(A)}{n(S)}$=$\dfrac{3}{6}$=$\dfrac{1} {2}$
    Let B be the event of getting an even number in the other die = {2,4, 6}. => n(B)= 3
    p(B)=$\dfrac{n(B)}{n(S)}$=$\dfrac{3}{6}$=$\dfrac{1} {2}$
    Required Probability, P(A ∩ B) = P(A).P(B) = $\dfrac{1}{2} \times\dfrac{1} {2}$=$\dfrac{1}{4}$

    Let A be any event and $\overline{A}$ be its complementary event (i.e., $\overline{A}$ is the event that A does not occur). Then
    $P(\overline{A})$ = 1 - P(A)

  • Odds on an event:

  • Let E be an event associated with a random experiment. Let x outcomes are favourable to E and y outcomes are not favourable to E, then
    Odds in favour of E are x:y, i.e., $\dfrac{x}{y}$ and
    Odds against E are y:x, i.e., $\dfrac{y}{x}$ P(E) = $\dfrac{x}{x+y}$ $P(\overline{E})$=$\dfrac{y}{x+y}$

    Example :

    What are the odds in favour of and against getting a 1 when a die is rolled?
    Let E be an event of getting 1 when a die is rolled
    Outcomes which are favourable to E, x=1
    Outcomes which are not favourable to E, y=5
    Odds in favour of getting 1 =$\dfrac{x}{y}=\dfrac{1}{5}$ Odds against getting 1 = $\dfrac{x}{y}$=$\dfrac{y} {x}$=$4\dfrac{5}{1}$

  • Conditional Probability:

  • Let A and B be two events associated with a random experiment. Then, probability of the occurrence of A given that B has already occurred is called conditional probability and denoted by P(A/B)

    Example :

    A bag contains 5 black and 4 blue balls. Two balls are drawn from the bag one by one without replacement. What is the probability of drawing a blue ball in the second draw if a black ball is already drawn in the first draw?
    Let A be the event of drawing black ball in the first draw and B be the event of drawing a blue ball in the second draw. Then, P(B/A) = Probability of drawing a blue ball in the second draw given that a black ball is already drawn in the first draw.
    Total Balls = 5 + 4 = 9
    Since a black ball is drawn already,
    total number of balls left after the first draw = 8
    total number of blue balls after the first draw = 4
    P(B/A) =$\dfrac{4}{8}$=$\dfrac{1}{2}$

  • Share with Friends