Easy Tutorial
For Competitive Exams

If $a^{x}=b^{y}$,then

$\log\dfrac{a}{b}=\dfrac{x}{y}$
$\dfrac{log a}{log b}=\dfrac{x}{y}$
$\dfrac{log a}{log b}=\dfrac{y}{x}$
None of these
Explanation:

$a^{x}$=$b^{y}$
=>$log a^{x}$=$log b^{y}$
=> x log a=y log b
=>$\dfrac{log a }{log b}$=$\dfrac{y}{x}.$
Additional Questions

Which of the following statements is not correct?

Answer

If $\log_{10}{2}=0.3010,then \log_{2}{10}$ is equal to :

Answer

If log 2 = 0.30103, the number of digits in $2^{64} $is:

Answer

If $\log_{10}{2}=0.3010,then \log_{10}{80}$ is equal to :

Answer

If $\log_x(\frac{9}{16})=-\frac{1}{2}$,then x is equal to :

Answer

$\dfrac{\log\sqrt{8}}{log 8}$ is equal to

Answer

If $\log{x}{y}=100\: and \: \log{2}{x}=10$,then the value of y is

Answer

If $log 2 = 0.3010 \:and \:log 3 = 0.4771,\: the\: value \:of \:\log_{5}{512} $is:

Answer

If log 27 = 1.431, then the value of log 9 is:

Answer

If $a^{x}=b^{y}$,then

Answer
Share with Friends
Privacy Copyright Contact Us