If $a^{x}=b^{y}$,then
$\log\dfrac{a}{b}=\dfrac{x}{y}$
$\dfrac{log a}{log b}=\dfrac{x}{y}$
$\dfrac{log a}{log b}=\dfrac{y}{x}$
None of these
Explanation:
$a^{x}$=$b^{y}$
=>$log a^{x}$=$log b^{y}$
=> x log a=y log b
=>$\dfrac{log a }{log b}$=$\dfrac{y}{x}.$
$a^{x}$=$b^{y}$
=>$log a^{x}$=$log b^{y}$
=> x log a=y log b
=>$\dfrac{log a }{log b}$=$\dfrac{y}{x}.$