Easy Tutorial
For Competitive Exams

If $\log{x}{y}=100\: and \: \log{2}{x}=10$,then the value of y is

$2^{10}$
$2^{100}$
$2^{1000}$
$2^{10000}$
Explanation:

$\log{2}{x}$=10=>x=$2^{10}$
therefore,$\log{x}{y}$=100
=>y=$x^{100}$
=>y=$(2^{10})^{100}$
=>y=$2^{1000}$
Additional Questions

If $log 2 = 0.3010 \:and \:log 3 = 0.4771,\: the\: value \:of \:\log_{5}{512} $is:

Answer

If log 27 = 1.431, then the value of log 9 is:

Answer

If $a^{x}=b^{y}$,then

Answer

Which of the following statements is not correct?

Answer

If $\log_{10}{2}=0.3010,then \log_{2}{10}$ is equal to :

Answer

If log 2 = 0.30103, the number of digits in $2^{64} $is:

Answer

If $\log_{10}{2}=0.3010,then \log_{10}{80}$ is equal to :

Answer

If $\log_x(\frac{9}{16})=-\frac{1}{2}$,then x is equal to :

Answer

$\dfrac{\log\sqrt{8}}{log 8}$ is equal to

Answer

If $\log{x}{y}=100\: and \: \log{2}{x}=10$,then the value of y is

Answer
Share with Friends
Privacy Copyright Contact Us