If $\log{x}{y}=100\: and \: \log{2}{x}=10$,then the value of y is
$2^{10}$
$2^{100}$
$2^{1000}$
$2^{10000}$
Explanation:
$\log{2}{x}$=10=>x=$2^{10}$
therefore,$\log{x}{y}$=100
=>y=$x^{100}$
=>y=$(2^{10})^{100}$
=>y=$2^{1000}$
$\log{2}{x}$=10=>x=$2^{10}$
therefore,$\log{x}{y}$=100
=>y=$x^{100}$
=>y=$(2^{10})^{100}$
=>y=$2^{1000}$