$\log_{10}{5}+\log_{10}{5x+1}=\log_{10}{(x+5)}+1$,then x is equal to:
1
3
5
10
Explanation:
$\log_{10}{5}+\log_{10}{(5x+1)}$=$\log_{10}{(x+5)}+1$
=>$\log_{10}{5}+\log_{10}{(5x+1)}$=$\log_{10}{(x+5)}+\log_{10}{10}$
=>$\log_{10}{5(5x+1)}$
=>$\log_{10}{10(x+5)}$
=>5(5x+1)=10(x+5)
=>5x+1=2x+10
=>3x=9
=>x=3
$\log_{10}{5}+\log_{10}{(5x+1)}$=$\log_{10}{(x+5)}+1$
=>$\log_{10}{5}+\log_{10}{(5x+1)}$=$\log_{10}{(x+5)}+\log_{10}{10}$
=>$\log_{10}{5(5x+1)}$
=>$\log_{10}{10(x+5)}$
=>5(5x+1)=10(x+5)
=>5x+1=2x+10
=>3x=9
=>x=3