If $log_{5} (x^2 + x) - log_{5} (x + 1)$ = 2, then the value of x is
$log_{5}\left(\dfrac{x^2+x}{x+1}\right)$=$log_{5}25$
=>$\left(\dfrac{x^2+x}{x+1}\right)$=25
=>$x^2-24x-25$=0
=>$(x-25)(x+1)$=0
=>x=25
If $log_{5} (x^2 + x) - log_{5} (x + 1)$ = 2, then the value of x is
$log_{5}\left(\dfrac{x^2+x}{x+1}\right)$=$log_{5}25$
=>$\left(\dfrac{x^2+x}{x+1}\right)$=25
=>$x^2-24x-25$=0
=>$(x-25)(x+1)$=0
=>x=25
If $\log_{10}{7}=a, then \log_{10}({\frac{1}{70}}) $is equal to: |
Answer |
$\log_{10}{5}+\log_{10}{5x+1}=\log_{10}{(x+5)}+1$,then x is equal to: |
Answer |
The value of $\left(\frac{1}{\log_{3}{60}}+\frac{1}{\log_{4}{60}}+\frac{1}{\log_{5}{60}}\right) is:$ |
Answer |
The value of $\log{2}{16}$ is |
Answer |
If $log \dfrac{a}{b}+log \dfrac{b}{a}$=log(a+b),then |
Answer |
If $log_{2}[log_{3}(log_{2} x)]$ = 1, x is equal to: |
Answer |
The value of $\dfrac{1}{log_{xy}xyz}+\dfrac{1}{log_{yz}xyz}+\dfrac{1}{log_{zx}xyz}$ is |
Answer |
If $log_{a}b$ =$\dfrac{1}{2}, log_{b}c$ =$\dfrac{1}{3}\:and\: log_{c}a$ =$\dfrac{k}{5}$, the value of k is |
Answer |
The value of log 9/8 - log 27/32 + log3/4 is ? |
Answer |
If $log_{5} (x^2 + x) - log_{5} (x + 1)$ = 2, then the value of x is |
Answer |