Easy Tutorial
For Competitive Exams

The value of $\log{2}{16}$ is

$\dfrac{1}{8}$
4
8
16
Explanation:

Let $\log{2}{16}$=n.
then,$2^{n}$=16=$2^{4}$=>n=4
Therefore ,$\log{2}{16}$=4
Additional Questions

If $log \dfrac{a}{b}+log \dfrac{b}{a}$=log(a+b),then

Answer

If $log_{2}[log_{3}(log_{2} x)]$ = 1, x is equal to:

Answer

The value of $\dfrac{1}{log_{xy}xyz}+\dfrac{1}{log_{yz}xyz}+\dfrac{1}{log_{zx}xyz}$ is

Answer

If $log_{a}b$ =$\dfrac{1}{2}, log_{b}c$ =$\dfrac{1}{3}\:and\: log_{c}a$ =$\dfrac{k}{5}$, the value of k is

Answer

The value of log 9/8 - log 27/32 + log3/4 is ?

Answer

If $log_{5} (x^2 + x) - log_{5} (x + 1)$ = 2, then the value of x is

Answer

If $\log_{10}{7}=a, then \log_{10}({\frac{1}{70}}) $is equal to:

Answer

$\log_{10}{5}+\log_{10}{5x+1}=\log_{10}{(x+5)}+1$,then x is equal to:

Answer

The value of $\left(\frac{1}{\log_{3}{60}}+\frac{1}{\log_{4}{60}}+\frac{1}{\log_{5}{60}}\right) is:$

Answer

The value of $\log{2}{16}$ is

Answer
Share with Friends
Privacy Copyright Contact Us