Easy Tutorial
For Competitive Exams

Arrange the following fractions $\dfrac {1}{2}$, $\dfrac {3}{4}$, $\dfrac {7}{8}$, $\dfrac {5}{12}$ in descending order

$\dfrac {7}{8}$ > $\dfrac {1}{2}$ > $\dfrac {5}{12}$ > $\dfrac {3}{4}$
$\dfrac {7}{8}$ > $\dfrac {3}{4}$ > $\dfrac {1}{2}$ > $\dfrac {5}{12}$
Explanation:

Now, $\dfrac {1}{2}$ = 0.5, $\dfrac {3}{4}$ = 0.75, $\dfrac {7}{8}$ = 0.875 , $\dfrac {5}{12}$ = 0.416...


Since, 0.875 > 0.75 > 0.5 > 0.416... . So $\dfrac {7}{8}$ > $\dfrac {3}{4}$ > $\dfrac {1}{2}$ > $\dfrac {5}{12}$


Additional Questions

$\dfrac{22}{7}$ = ?

Answer

0.$\overline{53}$ = ?

Answer

0.22$\overline{73}$ = ?

Answer

simplify $\sqrt{125x^{3}}$

Answer

Write $\sqrt{\dfrac{32}{144}}$ in the simplified form $a\sqrt{n}$

Answer

simplify $\dfrac{10\sqrt{3}}{\sqrt{5}}$

Answer

Simplify $\dfrac{2\sqrt{3}}{5}+\sqrt{108}$

Answer

Rationalise the denominaor in $\dfrac{7}{\sqrt{3}+2}$

Answer

Rationalise the denominator in $\dfrac{2}{1-\sqrt{2}}$

Answer

Simplify 3m8n3 $\div$ (3m8n3)0

Answer
Share with Friends
Privacy Copyright Contact Us