Easy Tutorial
For Competitive Exams

If log 2 = 0.3010 and log 3 = 0.4771, What is the value of $log_{5}1024$?

4.31
3.88
3.91
2.97
Explanation:

$log_{5}1024$

$\dfrac{log\:1024}{log\:5}$

=$\dfrac{log\left(2^{10}\right)}{log\left(\dfrac{10}{2}\right)}$

=$\dfrac{10\:log\left(2\right)}{log\:10-log\:2}$

=$\dfrac{10\times0.3010}{1-0.3010}$

=$\dfrac{3.01}{0.699}$

=$\dfrac{3010}{699}$

=4.31

Additional Questions

If log 2 = 0.30103 and log 3 = 0.4771, find the number of digits in $(648)^{5}$

Answer

If $log_{4}x+log_{2}x$=12, then x is equal to:

Answer

$log_{(.001)} (100)$ = ?

Answer

$(log_{3} 4)$ $(log_{4} 5)$ $(log_{5} 6)$ $(log_{6} 7)$ $(log_{7} 8)$ $(log_{8} 9)$$ (log_{9} 9)$ = ?

Answer

If $log_{12} 27$ = a, then $log_{6} 16$ is:

Answer

$log_{a} (ab)$ = x, then $log_{b} (ab)$ is :

Answer

Find the value of $\dfrac{1}{3}log_{10}125−2log_{10}4+log_{10}32$

Answer

Find the value of x which satisfies the given expression $[log_{10} 2 + log (4x + 1)$ = $log (x + 2) + 1]$

Answer

Which of the following statements is not correct?

Answer

If log 2 = 0.3010 and log 3 = 0.4771, What is the value of $log_{5}1024$?

Answer
Share with Friends
Privacy Copyright Contact Us