Easy Tutorial
For Competitive Exams

If $log_{12} 27$ = a, then $log_{6} 16$ is:

(3-a)/4(3+a)
(3+a)/4(3-a)
4(3+a)/(3-a)
4(3-a)/(3+a)
Explanation:

$log_{12} 27$ = a

=> log 27/ log 12 = a

=> $log 3^{3}$ / $log (3 * 2^{2})$ =a

=> 3 log 3 / log 3 + 2 log 2 = a

=> (log 3 + 2 log 2)/ 3 log 3 = 1/a

=> (log 3/ 3 log 3) + (2 log 2/ 3 log 3) = 1/3

=> (2 log 2)/ (3 log 3) = 1/a – 1/3 = (3-a)/ 3a

=> log 2/ log 3= (3-a)/3a

=> log 3 = (2a/3-a)log2

$log_{16} 16 $= log 16/ log 6

= $log 2^{4}/ log (2*3) $

= 4 log 2/ (log 2 + log 3)

= 4(3-a)/ (3+a)

Additional Questions

$log_{a} (ab)$ = x, then $log_{b} (ab)$ is :

Answer

Find the value of $\dfrac{1}{3}log_{10}125−2log_{10}4+log_{10}32$

Answer

Find the value of x which satisfies the given expression $[log_{10} 2 + log (4x + 1)$ = $log (x + 2) + 1]$

Answer

Which of the following statements is not correct?

Answer

If log 2 = 0.3010 and log 3 = 0.4771, What is the value of $log_{5}1024$?

Answer

If log 2 = 0.30103 and log 3 = 0.4771, find the number of digits in $(648)^{5}$

Answer

If $log_{4}x+log_{2}x$=12, then x is equal to:

Answer

$log_{(.001)} (100)$ = ?

Answer

$(log_{3} 4)$ $(log_{4} 5)$ $(log_{5} 6)$ $(log_{6} 7)$ $(log_{7} 8)$ $(log_{8} 9)$$ (log_{9} 9)$ = ?

Answer

If $log_{12} 27$ = a, then $log_{6} 16$ is:

Answer
Share with Friends
Privacy Copyright Contact Us