If $log_{4}x+log_{2}x$=12, then x is equal to:
$log_{4}x+log_{2}x$=12
=>$\dfrac{log\:x}{log\:4}+\dfrac{log\:x}{log\:2}$=12
=>$\dfrac{log\:x}{log\:2^2}+\dfrac{log\:x}{log\:2}$=12
=>$\dfrac{log\:x}{2\:log\:2}+\dfrac{log\:x}{log\:2}$=12
=>$\dfrac{log\:x+2\:log\:x}{2\:log\:2}$=12
=>$\dfrac{3\:log\:x}{2\:log\:2}$=12
Therefore,
logx=$\dfrac{12\times2\:log\:2}{3}$
=8 log 2
=$log(2^8)$
=log(256)
x=256