Easy Tutorial
For Competitive Exams

If $log_{4}x+log_{2}x$=12, then x is equal to:

1024
256
8
16
Explanation:

$log_{4}x+log_{2}x$=12

=>$\dfrac{log\:x}{log\:4}+\dfrac{log\:x}{log\:2}$=12

=>$\dfrac{log\:x}{log\:2^2}+\dfrac{log\:x}{log\:2}$=12

=>$\dfrac{log\:x}{2\:log\:2}+\dfrac{log\:x}{log\:2}$=12

=>$\dfrac{log\:x+2\:log\:x}{2\:log\:2}$=12

=>$\dfrac{3\:log\:x}{2\:log\:2}$=12

Therefore,

logx=$\dfrac{12\times2\:log\:2}{3}$

=8 log 2

=$log(2^8)$

=log(256)

x=256

Additional Questions

$log_{(.001)} (100)$ = ?

Answer

$(log_{3} 4)$ $(log_{4} 5)$ $(log_{5} 6)$ $(log_{6} 7)$ $(log_{7} 8)$ $(log_{8} 9)$$ (log_{9} 9)$ = ?

Answer

If $log_{12} 27$ = a, then $log_{6} 16$ is:

Answer

$log_{a} (ab)$ = x, then $log_{b} (ab)$ is :

Answer

Find the value of $\dfrac{1}{3}log_{10}125−2log_{10}4+log_{10}32$

Answer

Find the value of x which satisfies the given expression $[log_{10} 2 + log (4x + 1)$ = $log (x + 2) + 1]$

Answer

Which of the following statements is not correct?

Answer

If log 2 = 0.3010 and log 3 = 0.4771, What is the value of $log_{5}1024$?

Answer

If log 2 = 0.30103 and log 3 = 0.4771, find the number of digits in $(648)^{5}$

Answer

If $log_{4}x+log_{2}x$=12, then x is equal to:

Answer
Share with Friends
Privacy Copyright Contact Us