$log_{(.001)} (100)$ = ?
Let $log_{(.001)} (100)$ =p
$(.001)^p$=100
$\left(\dfrac{1}{1000}\right)^p$=100
$\left(\dfrac{1}{10^3}\right)^p$=$10^2$
$[\left(10\right)^{-3}]^p$=$10^2$
$\left(10\right)^{-3p}$=$10^2$
-3p=2
p=$\dfrac{-2}{3}$
$log_{(.001)} (100)$ = ?
Let $log_{(.001)} (100)$ =p
$(.001)^p$=100
$\left(\dfrac{1}{1000}\right)^p$=100
$\left(\dfrac{1}{10^3}\right)^p$=$10^2$
$[\left(10\right)^{-3}]^p$=$10^2$
$\left(10\right)^{-3p}$=$10^2$
-3p=2
p=$\dfrac{-2}{3}$
$(log_{3} 4)$ $(log_{4} 5)$ $(log_{5} 6)$ $(log_{6} 7)$ $(log_{7} 8)$ $(log_{8} 9)$$ (log_{9} 9)$ = ? |
Answer |
If $log_{12} 27$ = a, then $log_{6} 16$ is: |
Answer |
$log_{a} (ab)$ = x, then $log_{b} (ab)$ is : |
Answer |
Find the value of $\dfrac{1}{3}log_{10}125−2log_{10}4+log_{10}32$ |
Answer |
Find the value of x which satisfies the given expression $[log_{10} 2 + log (4x + 1)$ = $log (x + 2) + 1]$ |
Answer |
Which of the following statements is not correct? |
Answer |
If log 2 = 0.3010 and log 3 = 0.4771, What is the value of $log_{5}1024$? |
Answer |
If log 2 = 0.30103 and log 3 = 0.4771, find the number of digits in $(648)^{5}$ |
Answer |
If $log_{4}x+log_{2}x$=12, then x is equal to: |
Answer |
$log_{(.001)} (100)$ = ? |
Answer |