Easy Tutorial
For Competitive Exams
Aptitude Area Practice Q&A-Easy Page: 13
39115.Solve:5^3+10-$\sqrt16$=?
634
658
631
641
39116.Simplify:3+4*6-3?
42
24
23
21
44148.The ellipse has horizontal radius 8 cm and vertical radius 5 cm. Find the area of ellipse.
125.6$cm^{2}$
135.6$cm^{2}$
145.6$cm^{2}$
155.6$cm^{2}$
Explanation:

Given that:

Horizontal radius (a) = 8 cm

Vertical radius (b) = 5 cm

A = π a b

A =( π) (8)( 5)

A = 125.6 cm2

44149.A trapezoid's two bases are 6 m and 4m, and it is 3m high. What is its Area?
15$m^{2}$
16$m^{2}$
17$m^{2}$
18$m^{2}$
Explanation:

Area =$\dfrac{6m+4m}{2}\times 3m$

$5 m \times 3 m = 15 m^{2}$

44210.Adrian’s age is one less than twice Carlo’s age. The sum of their ages is 50. What are their ages?
17,33
18,32
19,31
20,30
Explanation:

let x be Carlo’s age. Twice his age is 2x. One less than twice his age is 2x - 1 which is Adrian’s age. Since the sum of their ages is 50,

we have
x + (2x - 1) = 50.
Simplifying, we have 3x - 1 = 50. This gives us 3x = 51 and x = 17.
Therefore, Carlo is 17 years old and Adrian is 2(17) - 1 = 33 years old.

44217. The present ages of three persons in proportions 4 : 7 : 9. Eight years ago, the sum of their ages was 56. Find their present ages (in years).
8, 20, 28
16, 28, 36
20, 35, 45
None of these
Explanation:
Let their present ages be 4x, 7x and 9x years respectively.
Then, (4x - 8) + (7x - 8) + (9x - 8) = 56
20x = 80
x = 4.
Their present ages are 4x = 16 years, 7x = 28 years and 9x = 36 years respectively.
44218.There are some boxes lying in a straight line. Every 6th box contains a muffin, every 8th contains a chocolate and every 9th contains a soft-toy. Which is the first box to have all 3 items?
48
36
72
None of these
Explanation:

Muffins will be contained in boxes- 6, 12, 18, 24, 36….

Chocolates will be contained in boxes- 8,16,24,32….

Soft-toys will be contained in boxes- 9,18,27,36….

The first box which contains all three items will have to be a multiple of 6, 8 and 9.

Being the first box to contain all three items, it will be the lowest multiple of all 3, which is the LCM.

LCM of 6, 8, 9 is 72.

44219.The circumference of the wheels of a vintage car are 7/3 and 13/4 m respectively.A mark is made on each of these wheels at their point of contact with the ground.Find the distance traveled by the car before which the part of the wheels with the marks is again on the ground at the same time next time.
85m
183m
91m
None of these
Explanation:

LCM of 7/3 and 13/4 = LCM of numerators/ HCF of denominators
= 91/1= 91.

44220.A boy walks at a speed of 4 kmph. How much time does he take to walk a distance of 20 km?
5 hours
3 hours
6 hours
2 hours
Explanation:
Given,
Distance =20 km
speed=4 kmph
Time=?
Using formula,
Time = Distance / speed
= 20/4
= 5 hours.
44221. In travelling from Mumbai to Goa, Moumita drove for 1 hour at 50 mph and for 3 hours at 60 mph. What was her average speed for the whole trip?
53.5 mph
50.0 mph
55.5 mph
57.5 mph
Explanation:
As we know that, Distance = Speed × Time

So, in 1 hour, distance covered = 50 × 1 = 50 miles

In next 3 hours, distance covered = 60 × 3 = 180 miles

Total distance covered = 50 + 180 = 230 miles

Total Time = 1 + 3 = 4 hrs

We know that,Average speed=$\dfrac{Total distance}{Total time}$

⇒ Avg. Speed = 230/4 = 57.5 mph
44226.Travel 70 miles, spent 2 hours on the first part of the trip and travel 30 miles, spent 1 hours on the second part of the trip ,then find the average speed?
35.33mph
34.00mph
33.33mph
30.33mph
Explanation:
Average speed=$\dfrac{Total distance}{Total time}$
Determine the total distance : 70+30=100
Determine the total time :2+1=3
Average speed=$\dfrac{100}{3}$.
Average speed=33.33mph
44312.In a race of 4 Kms A beats B by 100 m or 25 seconds, then time taken by A is
8 min 15 sec
10 min 17 sec
15 min 8 sec
16 min 15 sec
Explanation:

B covers 100m in 25 seconds B take time =(4000*25)/100=1000 sec=16 min 40 sec.

A takes time =1000 sec-25sec=975 sec= 16 min 15 sec.

44313.If in a race of 80m, A covers the distance in 20 seconds and B in 25 seconds, then A beats B by
20m
16m
11m
10m
Explanation:

The difference in the timing of A and B is 5 seconds. Hence, A beats B by 5 seconds.

The distance covered by B in 5 seconds = (80 * 5) / 25 = 16m

Hence, A beats B by 16m.

44342.Two pipes A and B can fill a tank in 12 and 24 minutes respectively. If both the pipes are used together, then how long will it take to fill the tank?
9 min
8 min
6 min
4 min
Explanation:
Required time =$\dfrac{12×24}{12+24}$

=$\dfrac{12×24}{36}$

=$\dfrac{24}{3}$

=8 minutes.

44343.A pump can fill a tank with water in 2 hours. Because of a leak, it took 2$\dfrac{2}{3}$ hours to fill the tank. The leak can drain all the water of the tank in?
6 hours
8 hours
9 hours
10 hours
Explanation:

Let the leak can drain all the water of the tank in y hours
Part of the tank filled by the pipe in 1 hr = 1/2
Part of the tank emptied by the leak in 1 hr = 1/y
Part of the tank filled by the pipe with leak in 1 hr=$\dfrac{1}{2\dfrac{2}{3}}=\dfrac{1}{\dfrac{8}{3}}=\dfrac{3}{8}$

$\dfrac{1}{2}+(−\dfrac{1}{y})=\dfrac{3}{8}$

$\dfrac{1}{2}−\dfrac{1}{y}=\dfrac{3}{8}$

⇒$\dfrac{1}{y}=\dfrac{1}{2}−\dfrac{3}{8}=\dfrac{1}{8}$

⇒y=8
i.e., the leak can drain all the water of the tank in 8 hours

44344.

A tank is filled in 10 hours by three pipes A, B and C. The pipe C is twice as fast as B and B is twice as fast as A. How much time will pipe A alone take to fill the tank?

70 hours
30 hours
35 hours
50 hours
Explanation:

Suppose pipe A alone takes x hours to fill the tank. Then, pipes B and C will take $\dfrac{x}{2}$ and $\dfrac{x}{4}$ hours respectively to fill the tank.
$\therefore \dfrac{1}{x}+\dfrac{2}{x}+\dfrac{3}{x}=\dfrac{1}{10}$
$\dfrac{7}{x}=\dfrac{1}{10}$
x=70

44345.Two pipes P and Q can fill a cistern in 12 min and 16 min respectively. Simultaneously both the pipes are opened together, then after how much time Q should be closed so that tanks full in 9 min?
3.5 min
4 min
4.5 min
4.75 min
Explanation:

Part of the cistern filled by pipe P in 1 min = $\dfrac{1}{12}$
Part of the cistern filled by pipe Q in 1 min = $\dfrac{1}{16}$
Suppose Q should be closed after x minutes
i.e., Pipe P and Q will be open for initial x minutes then P will be open for another (9-x) min
x$\left(\dfrac{1}{12}+\dfrac{1}{16}\right)+(9-x)\dfrac{1}{12}$=1
$\dfrac{7x}{48}+\dfrac{9}{12}-\dfrac{x}{12}$=1
7x+36−4x=48
3x=12
x=4

44361.Evaluate 6!
120
220
350
720
Explanation:

6!

= (6 x 5 x 4 x 3 x 2 x 1)

= 720

44362.Evaluate $^8P_{2}$
56
22
13
20
Explanation:

$^8P_{2}$

= 8 × 7

= 56

44363.How many words with or without meaning, can be formed by using all the letters of the word, 'DELHI' using each letter exactly once?
720
150
120
100
Explanation:

The word 'DELHI' has 5 letters and all these letters are different.

Total number of words (with or without meaning) that can be formed using all these 5 letters using each letter exactly once

= Number of arrangements of 5 letters taken all at a time

= $^5P_{5}$

=5!

=5×4×3×2×1

=120

Share with Friends