Length (l) = 15 cm.
10 mm = 1 cm.
Therefore, 50 mm = 50/10 cm = 5 cm.
Breadth = 5 cm.
Area = l × b
= 15 × 5 sq. cm.
= 75cm2.
Since r is half the diameter, r = 20 divided by 2
r = 10 cm
A = $\pi$ × r2 = 3.14 × 102 = 3.14 × 100 = 314 cm2
area grass
Lets break the area into two parts:
Part A is a square:
Area of A = a2 = 20m × 20m = 400m2
Part B is a triangle. Viewed sideways it has a base of 20m and a height of 14m.
Area of B =$\dfrac{1}{2}\left(b \times h \right)$ = $\dfrac{1}{2}\left(20 \times 14 \right)$ = 140m2
So the total area is:
Area = Area of A + Area of B = 400m2 + 140m2 = 540m2
Sam earns Rs.0.10 per square meter
Sam earns = Rs.0.10 × 540m2 = Rs.54
The Perimeter is 2 times the (base + side length)
Perimeter = 2(b+s)
Perimeter = 2 × (12 cm + 6 cm) = 2 × 18 cm = 36cm1/2 $\times$ 4 $\times$ 5 =10$m^2$
S = (1 + 2 + 3)/2 = 3
=> No triangle exists
$\dfrac{\sqrt{3}}{4}a^2 = 4\sqrt{3} => a = 4$
$3\sqrt{2} \times 2\sqrt{3}$ = 3cm
$h^2= 10^2-8^2 = 6^2\rightarrow h=6$
$\dfrac{1}{2}\times8\times6 = 24$
5x + 12x + 13x = 300 => x = 10
a = 50, b = 120, c = 130
S = (50 + 120 + 130)/2 = 150
$\sqrt{150\times100\times30\times20}\rightarrow3000$
$15 \times 15$ = 225 sq m
$\dfrac{d^2}{2}$ = $\dfrac{\left(20\times20\right)}{2}$ = 200 sq m
$a\sqrt{2}= 8\sqrt{2} \rightarrow a=8$
$a^2:\left(a\sqrt{2}\right)^2$
$a^2:2a^2 \rightarrow$ 1:2
4a = 48
4a = 20
a = 12 a = 5
$a^2$ = 144 $a^2$ = 25
Combined area = $a^2$ = 169 => a = 13
d = 13$\sqrt{2}$
2(l + 100) = 600 => l = 200 m
lb = 150
2(l + b) = 50 => l + b = 25
l - b = 5
l = 15 b = 10
5=$\sqrt{4^2+b^2}\rightarrow b^2 =9$
lb = 3 $\times$ 4 = 12
20=$\sqrt{16^2+b^2}\rightarrow$ b =12
3x $\times$ 2x = 3750 => x = 25
2(75 + 50) = 250 m
250 $\times$ 1/2 = Rs.125