Easy Tutorial
For Competitive Exams
Aptitude Area Practice Q&A-Easy Page: 15
44457.Simplify : a4b2 x a2b2
a4b4
a6b4
a4b2
a2b4
Explanation:

a4b2 x a2b2=a4+2b2+2 [ Using Rule am x an = am + n ]

= a6b4
44458.Simplify : 5(8x4 $\div$ 2x6)
$\dfrac{8}{x^{2}}$
$\dfrac{2}{x^{2}}$
$\dfrac{20}{x^{2}}$
$\dfrac{20}{x^{4}}$
Explanation:

5(8x4 $\div$ 2x6) [since a$\div$b=$\dfrac{a}{b}$ , split the equation to make it easier to solve]

=5(8 $\div$ 2)(x4 $\div$ x6) [Get the quotient of 8 and 2.]

=5(4)(x4-6) [Using Rule $a^{m}\div a^{n}= a^{m - n}$]

=20(x-2) [Get the product of 5 and 4]

=$\dfrac{20}{x^{2}}$ [Using Rule $a^{-m}=\dfrac{1}{a^{m}}$]

44459.Simplify : $\left( \dfrac{5a}{b^{2}}\right)^{2}$
$\dfrac{5a^{2}}{b^{4}}$
$\dfrac{25a^{2}}{b^{2}}$
$\dfrac{25a^{2}}{b^{4}}$
$\dfrac{5a^{2}}{b^{2}}$
Explanation:

$\left( \dfrac{5a}{b^{2}}\right)^{2} =\dfrac{ 5^{2}a^{2}}{b^{2 \times 2}}$ [Using Rule $(a^{m})^{n} = a^{mn}$]

=$\dfrac{25a^{2}}{b^{4}}$ [Evaluate 52]
44460.Simplify : 5*82/3
5
8
40
20
Explanation:

5*82/3

= 5*$(\sqrt[3]{8})^{2}$ [using Rule am/n=$\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$]

=5*22 [Get the value of $\sqrt[3]{8}$]

=5*4 [Get the value of 22]

=20 [Get the product of 5 and 4]

Share with Friends