(25)7.5 x (5)2.5 ÷ (125)1.5 = 5?
|
Answer
|
If x = 3 + 2$\sqrt{2}$, then the value of $\left( \sqrt{x} -\dfrac{1}{\sqrt{x}} \right)$ is:
|
Answer
|
$\dfrac{1}{1+x^{(b-a)}+x^{(c-a)}}+\dfrac{1}{1+x^{(a-b)}+x^{(c-b)}}+\dfrac{1}{1+x^{(b-c)}+x^{(a-c)}}$
|
Answer
|
Which is larget √2 or $\sqrt[3]{3}$?
|
Answer
|
Number of prime numbers in $\dfrac{6^{12}\times 35^{28}\times 15^{16}}{14^{12}\times 21^{11}}is:$
|
Answer
|
$\dfrac{243^{\dfrac{n}{5} \times} 3^{2n+1}}{9^{n} \times 3^{n-1}}=?$
|
Answer
|
If $\dfrac{9^{n} \times 3^{5} \times \left(27\right)^{3}}{3 \times \left(81\right)^{4}}=27$, then the value of n is:
|
Answer
|
If $\left(\sqrt{3}\right)^{5} \times 9^{2}=3^{n}\times 3\sqrt{3}$, then the value of n is:
|
Answer
|
$\left(\dfrac{x^{b}}{x^{c}}\right)^{b+c-a}.\left(\dfrac{x^{c}}{x^{a}}\right)^{c+a-b}.\left(\dfrac{x^{a}}{x^{b}}\right)^{a+b-c}=?$
|
Answer
|
$\dfrac{(243)^{n/5} \times 3^{2n+1}}{9^{n}\times 3^{n-1}}$=?
|
Answer
|