Easy Tutorial
For Competitive Exams

If x = 3 + 2$\sqrt{2}$, then the value of $\left( \sqrt{x} -\dfrac{1}{\sqrt{x}} \right)$ is:

1
2
2$\sqrt{2}$
3$\sqrt{3}$
Explanation:

$\left( \sqrt{x} -\dfrac{1}{\sqrt{x}} \right)^{2}=x+\dfrac{1}{x}-2$

$= (3 + 2\sqrt{2}) +\dfrac{1}{(3 + 2\sqrt{2})}-2$

$= (3 + 2\sqrt{2}) +\dfrac{1}{(3 + 2\sqrt{2})}\times\dfrac{(3 - 2\sqrt{2})}{(3 - 2\sqrt{2})}-2$



here the denominator part is 1,
(a+b) (a-b) = a2 - b2

(3 + 2$\sqrt{2}$) \times (3 - 2$\sqrt{2}$) = 3 2 - (2$\sqrt{2})^{2}$

=9-4*2(square of $\sqrt{2}$ is 2)

=9-8

=1



= (3 + 2$\sqrt{2}$) + (3 - 2$\sqrt{2}$) - 2

= 4.

$ \therefore \left( \sqrt{x} -\dfrac{1}{\sqrt{x}} \right)$=2.

Additional Questions

$\dfrac{1}{1+x^{(b-a)}+x^{(c-a)}}+\dfrac{1}{1+x^{(a-b)}+x^{(c-b)}}+\dfrac{1}{1+x^{(b-c)}+x^{(a-c)}}$

Answer

Which is larget √2 or $\sqrt[3]{3}$?

Answer

Number of prime numbers in $\dfrac{6^{12}\times 35^{28}\times 15^{16}}{14^{12}\times 21^{11}}is:$

Answer

$\dfrac{243^{\dfrac{n}{5} \times} 3^{2n+1}}{9^{n} \times 3^{n-1}}=?$

Answer

If $\dfrac{9^{n} \times 3^{5} \times \left(27\right)^{3}}{3 \times \left(81\right)^{4}}=27$, then the value of n is:

Answer

If $\left(\sqrt{3}\right)^{5} \times 9^{2}=3^{n}\times 3\sqrt{3}$, then the value of n is:

Answer

$\left(\dfrac{x^{b}}{x^{c}}\right)^{b+c-a}.\left(\dfrac{x^{c}}{x^{a}}\right)^{c+a-b}.\left(\dfrac{x^{a}}{x^{b}}\right)^{a+b-c}=?$

Answer

$\dfrac{(243)^{n/5} \times 3^{2n+1}}{9^{n}\times 3^{n-1}}$=?

Answer

(25)7.5 x (5)2.5 ÷ (125)1.5 = 5?

Answer

If x = 3 + 2$\sqrt{2}$, then the value of $\left( \sqrt{x} -\dfrac{1}{\sqrt{x}} \right)$ is:

Answer
Share with Friends
Privacy Copyright Contact Us