If x = 3 + 2$\sqrt{2}$, then the value of $\left( \sqrt{x} -\dfrac{1}{\sqrt{x}} \right)$ is:
$\left( \sqrt{x} -\dfrac{1}{\sqrt{x}} \right)^{2}=x+\dfrac{1}{x}-2$
$= (3 + 2\sqrt{2}) +\dfrac{1}{(3 + 2\sqrt{2})}-2$
$= (3 + 2\sqrt{2}) +\dfrac{1}{(3 + 2\sqrt{2})}\times\dfrac{(3 - 2\sqrt{2})}{(3 - 2\sqrt{2})}-2$
here the denominator part is 1,
(a+b) (a-b) = a2 - b2
(3 + 2$\sqrt{2}$) \times (3 - 2$\sqrt{2}$) = 3 2 - (2$\sqrt{2})^{2}$
=9-4*2(square of $\sqrt{2}$ is 2)
=9-8
=1
= (3 + 2$\sqrt{2}$) + (3 - 2$\sqrt{2}$) - 2
= 4.
$ \therefore \left( \sqrt{x} -\dfrac{1}{\sqrt{x}} \right)$=2.