Easy Tutorial
For Competitive Exams

Which is larget √2 or $\sqrt[3]{3}$?

√2
$\sqrt[3]{3}$
Both are equal
None of these
Explanation:

Given surds are of order 2 and 3, Their LCM is 6.



Changing each to a surd of order 6, we get :

√2=$2^{\dfrac{1}{2}}$

=$2^{\dfrac{1}{2}\times\dfrac{3}{3} }$

=$2^{\dfrac{3}{6}}$

=$(2^{3})^{\dfrac{1}{6}}$

=$(8)^{\dfrac{1}{6}}$

=$\sqrt[6]{8}$



$\sqrt[3]{3}=3^{\dfrac{1}{3}}$

=$3^{\dfrac{1}{3}\times\dfrac{2}{2} }$

=$3^{\dfrac{2}{6}}$

=$(3^{2})^{\dfrac{1}{6}}$

=$(9)^{\dfrac{1}{6}}$

=$\sqrt[6]{9}$



Clearly, $\sqrt[6]{9}$ > $\sqrt[6]{8}$ and hence $\sqrt[3]{3}$ > √2
Additional Questions

Number of prime numbers in $\dfrac{6^{12}\times 35^{28}\times 15^{16}}{14^{12}\times 21^{11}}is:$

Answer

$\dfrac{243^{\dfrac{n}{5} \times} 3^{2n+1}}{9^{n} \times 3^{n-1}}=?$

Answer

If $\dfrac{9^{n} \times 3^{5} \times \left(27\right)^{3}}{3 \times \left(81\right)^{4}}=27$, then the value of n is:

Answer

If $\left(\sqrt{3}\right)^{5} \times 9^{2}=3^{n}\times 3\sqrt{3}$, then the value of n is:

Answer

$\left(\dfrac{x^{b}}{x^{c}}\right)^{b+c-a}.\left(\dfrac{x^{c}}{x^{a}}\right)^{c+a-b}.\left(\dfrac{x^{a}}{x^{b}}\right)^{a+b-c}=?$

Answer

$\dfrac{(243)^{n/5} \times 3^{2n+1}}{9^{n}\times 3^{n-1}}$=?

Answer

(25)7.5 x (5)2.5 ÷ (125)1.5 = 5?

Answer

If x = 3 + 2$\sqrt{2}$, then the value of $\left( \sqrt{x} -\dfrac{1}{\sqrt{x}} \right)$ is:

Answer

$\dfrac{1}{1+x^{(b-a)}+x^{(c-a)}}+\dfrac{1}{1+x^{(a-b)}+x^{(c-b)}}+\dfrac{1}{1+x^{(b-c)}+x^{(a-c)}}$

Answer

Which is larget √2 or $\sqrt[3]{3}$?

Answer
Share with Friends
Privacy Copyright Contact Us