Easy Tutorial
For Competitive Exams

Number of prime numbers in $\dfrac{6^{12}\times 35^{28}\times 15^{16}}{14^{12}\times 21^{11}}is:$

56
66
112
none of this
Explanation:

$\dfrac{6^{12}\times 35^{28}\times 15^{16}}{14^{12}\times 21^{11}}=$ $\dfrac{\left(2\times 3\right)^{12}\times \left(5\times7\right)^{28}\times \left(3\times 5\right)^{16}}{\left(2\times 7\right)^{12}\times \left(3 \times 7\right)^{11}}$

$=\dfrac{2^{12}\times 3^{12}\times 5^{28}\times 7^{28}\times 3^{16}\times 5^{16}}{2^{12}\times 7^{12}\times 3^{11}\times 7^{11}}$

$=2^{\left(12-12\right)}\times 3^{\left(12+16-11\right)}\times5^{\left(28+16\right)}\times7^{\left(28-12-11\right)}$

$=2^{0} \times3^{17} \times5^{44} \times7^{-5} $

$=\dfrac{3^{17}\times 5^{44} }{7^{5}}$

Number of prime factors = 17 + 44 + 5 = 66.


Additional Questions

$\dfrac{243^{\dfrac{n}{5} \times} 3^{2n+1}}{9^{n} \times 3^{n-1}}=?$

Answer

If $\dfrac{9^{n} \times 3^{5} \times \left(27\right)^{3}}{3 \times \left(81\right)^{4}}=27$, then the value of n is:

Answer

If $\left(\sqrt{3}\right)^{5} \times 9^{2}=3^{n}\times 3\sqrt{3}$, then the value of n is:

Answer

$\left(\dfrac{x^{b}}{x^{c}}\right)^{b+c-a}.\left(\dfrac{x^{c}}{x^{a}}\right)^{c+a-b}.\left(\dfrac{x^{a}}{x^{b}}\right)^{a+b-c}=?$

Answer

$\dfrac{(243)^{n/5} \times 3^{2n+1}}{9^{n}\times 3^{n-1}}$=?

Answer

(25)7.5 x (5)2.5 ÷ (125)1.5 = 5?

Answer

If x = 3 + 2$\sqrt{2}$, then the value of $\left( \sqrt{x} -\dfrac{1}{\sqrt{x}} \right)$ is:

Answer

$\dfrac{1}{1+x^{(b-a)}+x^{(c-a)}}+\dfrac{1}{1+x^{(a-b)}+x^{(c-b)}}+\dfrac{1}{1+x^{(b-c)}+x^{(a-c)}}$

Answer

Which is larget √2 or $\sqrt[3]{3}$?

Answer

Number of prime numbers in $\dfrac{6^{12}\times 35^{28}\times 15^{16}}{14^{12}\times 21^{11}}is:$

Answer
Share with Friends
Privacy Copyright Contact Us