If $\left(\sqrt{3}\right)^{5} \times 9^{2}=3^{n}\times 3\sqrt{3}$, then the value of n is:
$\left(\sqrt{3}\right)^{5} \times 9^{2}=3^{n}\times 3\sqrt{3}$
$\Leftrightarrow \left(3^{\dfrac{1}{2}}\right)^{5} \times \left(3^{2}\right)^{2}$ $ = 3^{n}\times3 \times 3^{\dfrac{1}{2}}$
$\Leftrightarrow 3^{\left(\dfrac{1}{2}\times 5\right)}\times 3^{\left(2\times 2\right)}$ $=3^{\left(n+1+\dfrac{1}{2}\right)}$
$\Leftrightarrow3^{\left(\dfrac{5}{2}+4\right)}$ $=3^{\left(n+\dfrac{3}{2}\right)}$
$\Leftrightarrow n+\dfrac{3}{2}=\dfrac{13}{2}$
$\Leftrightarrow n=\left(\dfrac{13}{2}-\dfrac{3}{2}\right)$ $=\dfrac{10}{2}=5$