Easy Tutorial
For Competitive Exams

If $\left(\sqrt{3}\right)^{5} \times 9^{2}=3^{n}\times 3\sqrt{3}$, then the value of n is:

2
3
4
5
Explanation:

$\left(\sqrt{3}\right)^{5} \times 9^{2}=3^{n}\times 3\sqrt{3}$

$\Leftrightarrow \left(3^{\dfrac{1}{2}}\right)^{5} \times \left(3^{2}\right)^{2}$ $ = 3^{n}\times3 \times 3^{\dfrac{1}{2}}$

$\Leftrightarrow 3^{\left(\dfrac{1}{2}\times 5\right)}\times 3^{\left(2\times 2\right)}$ $=3^{\left(n+1+\dfrac{1}{2}\right)}$

$\Leftrightarrow3^{\left(\dfrac{5}{2}+4\right)}$ $=3^{\left(n+\dfrac{3}{2}\right)}$

$\Leftrightarrow n+\dfrac{3}{2}=\dfrac{13}{2}$

$\Leftrightarrow n=\left(\dfrac{13}{2}-\dfrac{3}{2}\right)$ $=\dfrac{10}{2}=5$

Additional Questions

$\left(\dfrac{x^{b}}{x^{c}}\right)^{b+c-a}.\left(\dfrac{x^{c}}{x^{a}}\right)^{c+a-b}.\left(\dfrac{x^{a}}{x^{b}}\right)^{a+b-c}=?$

Answer

$\dfrac{(243)^{n/5} \times 3^{2n+1}}{9^{n}\times 3^{n-1}}$=?

Answer

(25)7.5 x (5)2.5 ÷ (125)1.5 = 5?

Answer

If x = 3 + 2$\sqrt{2}$, then the value of $\left( \sqrt{x} -\dfrac{1}{\sqrt{x}} \right)$ is:

Answer

$\dfrac{1}{1+x^{(b-a)}+x^{(c-a)}}+\dfrac{1}{1+x^{(a-b)}+x^{(c-b)}}+\dfrac{1}{1+x^{(b-c)}+x^{(a-c)}}$

Answer

Which is larget √2 or $\sqrt[3]{3}$?

Answer

Number of prime numbers in $\dfrac{6^{12}\times 35^{28}\times 15^{16}}{14^{12}\times 21^{11}}is:$

Answer

$\dfrac{243^{\dfrac{n}{5} \times} 3^{2n+1}}{9^{n} \times 3^{n-1}}=?$

Answer

If $\dfrac{9^{n} \times 3^{5} \times \left(27\right)^{3}}{3 \times \left(81\right)^{4}}=27$, then the value of n is:

Answer

If $\left(\sqrt{3}\right)^{5} \times 9^{2}=3^{n}\times 3\sqrt{3}$, then the value of n is:

Answer
Share with Friends
Privacy Copyright Contact Us