D, E, and F are the mid-points of ΔABC
DE || AC and
DE =$ \dfrac{1}{2}$ AC (Midpoint theorem) …. (1)
In ΔBED and ΔBCA
$\angle BED = \angle BCA$ (Corresponding angles)
$\angle BDE = \angle BAC$ (Corresponding angles)
$\angle EBD = \angle CBA$ (Common angles)
ΔBED∼ΔBCA (AAA similarity criterion)
$\dfrac{ar (ΔBED) }{ ar (ΔBCA)}=(\dfrac{DE}{AC})^2$
$\dfrac{ar (ΔBED) }{ ar (ΔBCA)} = \dfrac{1}{4}$ [From (1)]
ar (ΔBED) = $\dfrac{1}{4}$ ar (ΔBCA)
Similarly,
ar (ΔCFE) = $\dfrac{1}{4}$ ar (CBA) and ar (ΔADF) = $\dfrac{1}{4}$ ar (ΔADF) = $\dfrac{1}{4}$ ar (ΔABC)
Also,
ar (ΔDEF) = ar (ΔABC) − [ar (ΔBED) + ar (ΔCFE) + ar (ΔADF)]
ar (ΔDEF) = ar (ΔABC) − $\dfrac{3}{4}$ ar (ΔABC) = $\dfrac{1}{4}$ ar (ΔABC)
$\dfrac{ar (ΔDEF)}{ ar (ΔABC)} =\dfrac{1}{4}$