Given:
AM and DN are the medians of triangles ABC and DEF respectively and ΔABC ~ ΔDEF
We have to prove: $\dfrac{Area(ΔABC)}{Area(ΔDEF)} = \dfrac{AM^2}{DN^2}$
Since, ΔABC ~ ΔDEF (Given)
$\dfrac{ Area(ΔABC)}{Area(ΔDEF)} = \dfrac{AB^2}{DE^2}$ ……………………………(i)
and,$\dfrac{AB}{DE} = \dfrac{BC}{EF} = \dfrac{CA}{FD} $………………………………………(ii)
$\dfrac{AB}{DE} = \dfrac{\frac{1}{2}\times BC}{\frac{1}{2}\times EF} = \dfrac{CD}{FD}$
In ΔABM and ΔDEN,
Since ΔABC ~ ΔDEF
$\angle B = \angle E$
$\dfrac{AB}{DE} = \dfrac{BM}{EN}$ [Already Proved in equation (i)]
ΔABC ~ ΔDEF [SAS similarity criterion] $\dfrac{AB}{DE} = \dfrac{AM}{DN}$ …………………………………………………..(iii)ΔABM ~ ΔDEN
As the areas of two similar triangles are proportional to the squares of the corresponding sides
$\dfrac{ area(ΔABC)}{area(ΔDEF)} = \dfrac{AB^2}{DE^2} = \dfrac{AM^2}{DN^2}$
Hence, proved