By applying Pythagoras Theorem in ∆ADB, we get,
$AB^2 = AD^2 + DB^2$
We can write it as;
$AD^2 = AB^2 − DB^2$ ……………….. (i)
By applying Pythagoras Theorem in ∆ADC, we get,
$AD^2 + DC^2 = AC^2$
From equation (i),
$AB^2 − BD^2 + DC^2 = AC^2$
$AB^2 − BD^2 + (BC − BD)^2 = AC^2$
$AC^2 = AB^2 − BD^2 + BC^2 + BD2 −2BC × BD$
$AC^2 = AB^2 + BC^2 − 2BC × BD$
Hence, proved.