Area of semi-circle =$\dfrac{\pi r^{2}}{2}=\dfrac{1}{2}\times\dfrac{22}{7}\times7\times7$
$=77cm^{2}$
in this reaction which is Lewis acid and Lewis base?
I. Gregor Mendel | - Neurospora |
II. T.H. Morgan | -Drosophila |
III. C.B. Bridges | - Garden pea |
IV. J.H.Muller | - Mice |
Take x as common ,$\dfrac{x(x-2)\times3(x+2)}{x(x+2)\times(x-2)}=3$
The Sister's age = B
A boy is now twice as old as his sister A=2B
Four years ago, he was thrice as old as her
(A-4) = 3(B-4)
apply A = 2B
2B-4 = 3B-12
3B-2B = 12-4
B=8
A= 2B
A=2(8)
A=16
Boy's age=16 years
Sister's age=8 years
$\dfrac{x^{\dfrac{3}{2}}}{9}=\dfrac{16}{x^{\dfrac{1}{2}}}$
$x^{\dfrac{3}{2}+\dfrac{1}{2}}=16\times9$
$x^{2}=16\times9$
$x=4\times3=12$
Let R ans r be the outer and inner radii of the hemisphere.
Now,its curved surface area=outer surface area+inner surface area
$2R^{2}\times2r^{2}$
$=2\pi (R^{2}+r^{2})sq.units$
$Total surface area=outer surface area+inner surface area+Area at the base$
$=2\pi R^{2}+2\pi r^{2}+\pi (R^{2}-r^{2})$
$=2\pi (R^{2}+r^{2})+\pi(R+r)(R-r)sq.units$
$=\pi(3R^{2}+r^{2})sq.units$
Now
52 weeks * 7 days/week = 364 day
52 full weeks means -> 52 Friday
For remaining 2 days, one of the following pair is possible
(sun,Mon) (Mon,Tue) (Tue,Wed) (Wed,Thu) (Thu,Fri) (Fri,Sat) (Sat,Sun)
Out of 7 pair there is 2 pair in which 53rd Friday may come.
Probability of 53 Friday in a leap year = (Thu,Fri) (Fri,Sat) = 2/7
Out of 7 pair there is 2 pair in which 53rd Saturday may come.
Probability of 53 Saturday in a leap year = (Fri,Sat) (Sat,Sun) = 2/7
$p(AUB)=p(A)+p(B)-p(AnB)$
$\dfrac{2}{7}+\dfrac{2}{7}-\dfrac{1}{7}=\dfrac{3}{7}$
$=\left(\left(x+y\right)^2+\left(x+y\right)\right)+\left(8\left(x+y\right)+8\right)$
$=\left(x+y\right)\left(\left(x+y\right)+1\right)+8\left(\left(x+y\right)+1\right)$
$=\left(\left(x+y\right)+1\right)\left(\left(x+y\right)+8\right)$
$=\left(x+y+1\right)\left(x+y+8\right)$
$sum of first `n' odd nos=n^{2}$
$sum of first `n' natural nos=\dfrac{n(n+1)}{2}$
$Difference =n^{2}-[\dfrac{n^{2}+n}{2}]^{2}$
$=\dfrac{2 n^{2}-n^{2}-n}{2}$
$=\dfrac{n^{2}-n}{2}$
$=\dfrac{n(n-1)}{2}$
25% of 8=$\dfrac{25}{100}\times 8=2.0$
40% of 6=$\dfrac{40}{100}\times 6=2.4$
30% of 9=$\dfrac{30}{100}\times 9=2.7$
20% of 15 =$\dfrac{20}{100}\times 15=3.0$
$a.Area=\frac{1}{2}bh$
$ =\frac{1}{2}\times10\times8$
$=40c m^{2}$
$b.Right angled tiangle=13^{2}=5^{2}+12^{2}$
$ =\frac{1}{2}\times5\times12$
$ =30cm^{2}$
$c.Equilateral triangle=\frac{\sqrt{3}}{4}\times10\times10$
$ =25\sqrt{3}$
$ =25\times1.732$
$=43.3cm^{2}$
$d.Right angled triangle= \frac{1}{2}\times3\times4$
$ =6ccm^{2}$
Difference=53-43=10 should be increase
New average=27+$\dfrac{10}{75}$
= 27.13
n=3 times
$N=\dfrac{(n-1)\times100)}{R}$
$ =\dfrac{(3-1)\times100}{8}$
$ =\dfrac{200}{8}$
$ =25 years$
(a)Annie Besant | 1. Kesari |
(b) Bipin Chandrapal | 2.Common weal |
(c) Boopendra Nath Dutt | 3. The New Asia |
(d) Tillak | 3. Yuganthar |
- TNPSC Group2 & 2A General Tamil
- General Tamil - 2022
- General Tamil - 2017
- General Tamil - 2016
- General Tamil - 2015
- General Tamil - 2014
- General Tamil - 2013
- TNPSC Group2 & 2A General Studies
- General Studies Tamil - 2022
- General Studies English - 2022
- General Studies - 2017
- General Studies - 2016
- General Studies - 2015
- General Studies - 2014
- General Studies - 2013