In ΔDOC and ΔBOA,
AB || CD, thus alternate interior angles will be equal,
$\angle CDO = \angle ABO$
Similarly,
$\angle DCO = \angle BAO$
Also, for the two triangles ΔDOC and ΔBOA, vertically opposite angles will be equal;
$\angle DOC = \angle BOA$
Hence, by AAA similarity criterion,
ΔDOC ~ ΔBOA
Thus, the corresponding sides are proportional.
$\dfrac{DO}{BO} = \dfrac{OC}{OA}$
$\dfrac{OA}{OC} = \dfrac{OB}{OD}$
Hence, proved.